• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • Tagged with
  • 13
  • 13
  • 13
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Carbonatos em altas pressões como possíveis hospedeiros de carbono no interior da terra / Carbonates at high pressures as possible carriers for deep carbon reservoirs in Earths lower mantle

Michel Lacerda Marcondes dos Santos 05 August 2016 (has links)
O estudo do interior da Terra apresenta diversos desafios, principalmente devido à impossibilidade de observações diretas de suas propriedades. Ondas sísmicas liberadas por terremotos são a melhor fonte de informação sobre a estrutura do planeta, mas sua correta interpretação depende do conhecimento das propriedades de seus elementos constituintes. Entretanto, estes estudos devem ser feitos nas condições extremas de temperatura e pressão do interior terrestre, condições difíceis de serem alcançadas em laboratório. Neste contexto, o estudo teórico de materiais tem sido muito importante na elaboração de modelos sobre a estrutura interna da Terra e na correta interpretação de dados sísmicos. Pesquisas recentes têm mostrado que a quantidade de carbono no manto inferior da Terra é maior do que se pensava anteriormente, e é importante compreender seus efeitos no interior profundo da Terra. Apesar da importância de entender os efeitos do carbono no interior da Terra, existem poucos estudos deste elemento nestas condições extremas de pressão e temperatura. Neste trabalho, utilizamos métodos e técnicas da física do estado sólido para estudar as propriedades de compostos de carbono nas condições de pressão e temperatura do manto inferior terrestre. Estudamos, primeiramente, as propriedades estruturais, eletrônicas e elásticas do MgSiO3 nas estruturas perovskita e pós-perovskita, considerado o principal mineral do manto inferior. Os resultados obtidos para as velocidades acústicas neste mineral mostraram variações maiores em relação às direções cristalinas, quando comparadas com mudanças devido à transição de fase estrutural. Isso indica que uma orientação preferencial dos eixos (anisotropia) pode ajudar a explicar algumas regiões com aumento descontínuo nas velocidades sísmicas. Posteriormente, foram obtidas as propriedades do MgCO3 e do CaCO3 em suas estruturas mais estáveis, em função da pressão. Nossos resultados foram comparados com os do MgSiO3 , mostrando que carbonatos de cálcio e de magnésio são estáveis nas condições do manto terrestre e que sua formação é energeticamente favorável. Resultados dos cálculos dos coeficientes elásticos e das velocidades acústicas nestes minerais mostram que as velocidades são menores que aquelas no MgSiO 3 . Dessa forma, em regiões ricas em carbono deve ocorrer a formação destes carbonatos e, por conseguinte, as velocidades sísmicas seriam menores nessas regiões. Isso pode explicar a existência das zonas de baixa velocidade na fronteira do manto inferior com o núcleo. Foram estudadas, também, as consequências da introdução de efeitos térmicos. Entretanto, obteve-se que os resultados não apresentam alterações significativas, de modo que mesmo nas altas temperaturas do interior da Terra nossas conclusões permanecem válidas, onde propomos que as regiões de baixa velocidade no manto inferior possam ser provocadas pela presença de carbono na forma de carbonatos e que a formação destes seria um modelo adicional para explicar onde e como o carbono pode ser armazenado no manto profundo. / Investigations on the Earths interior face several challenges, especially due to the infeasibility of direct observations of its properties. Earthquake seismic waves are the best information source about our planets structure, but its correct interpretation depends on the knowledge of its forming elements. However, these studies must consider the extreme pressures and temperatures of the Earths interior, hard to achieve experimentally. In this way, theoretical methods have emerged as an essential tool in elaborating models for the Earth internal structure and in the correct interpretation of seismic data. Recent studies have shown that the Earth must have much more carbon than previous thought, and it is important to understand its effects on the Earths deep interior. Despite its importance, there are few studies on carbon in these extreme conditions of pressure and temperature and on its effects in the Earths interior. In this investigation, we use theoretical solid state physics methods to investigate the properties of carbon compounds in the pressure and temperature conditions of Earths deep interior. First of all, we studied the electronic and elastic properties of MgSiO3 in the perovskite and post perovskite structures. This silicate is considered the main mineral in the Earths lower mantle. Our results show that seismic velocities have a larger variation with respect to the propagation direction than that with the phase transition. This indicates that a lattice preferred orientation can explain some seismic discontinuities. Thereafter, the properties of the MgCO3 and CaCO3 minerals were obtained in their more stable structures with respect to pressure. The results were compared with those of the MgSiO3, showing that calcium and magnesium carbonates are stable in the Earths mantle and that their formation is energetically favorable. The elastic coefficients and the acoustic velocities in these carbonates show seismic velocities considerably lower than those in the MgSiO3 . In this way, in regions with high carbon concentration the formation of carbonates could favorably occur and therefore the seismic velocities would be lower in those regions. This may explain the existence of low velocity zones near the bottom of Earths lower mantle. We also studied the consequences of the introduction of thermal effects. However, our results do not show any significant variation with temperature. Hence, even in the high temperatures of Earths interior, our conclusions are still valid where we propose that low velocity regions can be caused by the presence of carbon in the form of carbonates. Its formation could provide an additional model to explain where and how carbon can be stored in the deep mantle.
12

High Sensitivity Nuclear Magnetic Resonance at Extreme Pressures

Meier, Thomas 10 May 2016 (has links)
Moderne Hochdruckforschung entwickelt sich rasant zu einer der vielfältigsten und überraschensten Disziplinen der Festkörperphysik. Unter Benutzung von Diamantstempelzellen können Drücke erreicht werden, die den Bedingungen im Inneren unserer Erde ähneln. Eine Anwendung von Kernmagnetischen Resonanzexperimenten (NMR) in Diamantstempelzellen galt jedoch für lange Zeit als unmöglich. In der vorliegenden Arbeit wird ein neuartiger Ansatz weiterentwickelt, der Radiofrequenz-(RF)-Mikrospulen benutzt, die direkt zwischen den Diamantstempeln platziert werden, und somit zu einer signifikanten Sensitivitätssteigerung führen. Es ist gelungen, Hochdruckzellen zu entwickeln, die für die speziellen Anforderungen der NMR zugeschnitten sind. Des Weiteren konnte eine nicht metallische, nicht magnetische Dichtung entwickelt werden, die zudem zu einer signfifikanten Stabilisierung des Probenvolumens führt. Eine breit angelegte Analyse der Leistungsfähigkeit dieser neuartigen NMR-Hochdruckprobenköpfe zeigt deren Leistungsfähigkeit mit sehr hohen Empfifindlichkeiten sowie einer exzellenten RF Anregung und Zeitauflösung. Drei Anwendungsbeispiele, die das Potenzial dieses Ansatzes in dieser Arbeit unterstreichen, werden vorgestellt. Bei Drücken von bis zu 4 GPa werden die elektronischen und dynamischen Eigenschaften von elementarem Gallium untersucht. Unter höheren Drücken ist es gelungen, einen druckinduzierten Isolator-Metall-Übergang in dem ternären Chalkogenid AgInTe2 zu beobachten. Schlussendlich ist es gelungen, die strukturellen und elektronischen Eigenschaften von Rubin bei Drücken von bis zu 30.5 GPa zu untersuchen, was einer Verdreifachung des bisher zugänglichen experimentellen Druckbereiches entspricht und die NMR für moderne Hochdruckanwendungen möglich macht.
13

Estrutura eletrônica e magnética sob altas pressões : metais de transição 3d/5d e terras raras / Electronic and magnetic structure under high pressures : 3d/5d transition metals and rare earths

Veiga, Larissa Sayuri Ishibe, 1987- 27 August 2018 (has links)
Orientadores: Narcizo Marques de Souza Neto, Flávio Cesar Guimarães Gandra / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-27T10:57:14Z (GMT). No. of bitstreams: 1 Veiga_LarissaSayuriIshibe_D.pdf: 10330689 bytes, checksum: 72bdd1a8fad1f82f880bb2c86fcd6a9e (MD5) Previous issue date: 2015 / Resumo: Este trabalho teve como objetivo a investigação de diversos mecanismos físicos provenientes das estruturas eletrônicas, magnéticas e cristalinas de sistemas ternários de terras raras e metais de transição 3d-5d através do uso das técnicas de espectroscopia de absorção de raios X e difração de raios X sob altas pressões. Dentre os fenômenos físicos estudados em função da compressão da rede cristalina induzida pela aplicação da pressão estão o magnetismo proveniente dos orbitais 4f e 5d nos sistemas ternários RERh4B4 (com RE = Dy e Er), os efeitos do campo elétrico cristalino e as interações de troca magnéticas nas perovskitas duplas 3d-5d (AFeOsO6, com A = Ca e Sr) e o acoplamento spin-órbita nos metais de transição 5d. As propriedades eletrônicas e magnéticas dos orbitais 4f e 5d das terras raras nos compostos da família RERh4B4 (RE = Dy e Er) foram investigadas através de experimentos de XANES e XMCD sob altas pressões na borda L3 do Dy e Er . Os sinais magnéticos das contribuições quadrupolar (2p3/2-> 4f) e dipolar (2p3/2->5d) presentes nos espectros de XMCD, em ambos os compostos, diminuem progressivamente em função da pressão. Este comportamento foi explicado em termos das interações de troca magnéticas entre os íons de terras raras, que são enfraquecidas pelas alterações locais da estrutura atômica induzidas pela compressão da rede cristalina. Já no sistema de perovskitas duplas, foi demonstrado que a compressão da estrutura Sr2FeOsO6, com um arranjo cristalino ordenado dos íons de Fe (3d) e Os (5d), permite o controle contínuo e reversível da coercividade e magnetização de saturação. Este efeito foi explicado em termos do aumento do campo elétrico cristalino em função da pressão, que altera as interações de troca magnéticas Fe-O-Os e transforma o material com magnetização remanente e coercividade praticamente nulas a pressão ambiente em outro com uma coercividade robusta (~0.5 T) e magnetização de saturação expressiva a pressões acima de ~10 GPa. Por fim, a última parte desta tese de doutorado foi dedicada ao uso da seletividade química e orbital da técnica de XANES na investigação do acoplamento spin-órbita nos elementos Pt (Pt0, 5d9) e Hf (Hf0, 5d2) sob altas pressões. Ao contrário do observado para a Pt, o cálculo do branching ratio a partir dos espectros de absorção nas bordas L2,3 do Hf revelaram que o acoplamento spin-órbita aumenta monotonicamente em função da pressão aplicada. Esse comportamento foi relacionado às propriedades supercondutoras e estruturais presentes nesse elemento sob altas pressões / Abstract: The scientific goal of this work has been the investigation of several physical mechanisms derived from the electronic, magnetic and structural properties of ternary rare earth and transition metal systems by means of X-ray absorption spectroscopy and X-ray diffraction techniques in a diamond anvil cell. Among the physical properties studied as a function of lattice compression induced by applied pressure are the magnetism of the 4f and 5d orbitals in tetragonal rare earth rhodium borides RERh4B4 (with RE = Dy e Er), the crystal electric field effects and magnetic exchange interactions in 3d-5d double perovskite systems (A2FeOsO6, with A = Ca e Sr) and the spin-orbit coupling in 5d transition metals. The electronic and magnetic properties of the rare earth 4f and 5d orbitals in the RERh4B4 (RE = Dy e Er) systems were investigated through high pressure XANES and XMCD experiments at Dy and Er L3 edges. For both compounds, the magnetic signals of the quadrupole (2p3/2->4f) and dipole (2p3/2->5d) contributions to the XMCD spectra progressively decrease as a function of pressure. This behavior was explained in terms of the magnetic exchange interactions between the rare earth ions, which are weakened by changes in the local atomic structure induced by compression of the crystal lattice. In the double perovskite system, it has been shown that compression of Sr2FeOsO6 structure with an ordered crystalline arrangement of iron (3d) and osmium (5d) transition metal ions, allows for continuous and reversible control of magnetic coercivity and saturation magnetization. This effect was explained in terms of enhanced crystal electric fields under high pressure, which alter the Fe-O-Os magnetic exchange interactions and transform the material with an otherwise mute response to magnetic fields into one with a strong coercivity (~0.5 T) and substantial saturation magnetization at pressures above ~10 GPa. Finally, the last part of this thesis is dedicated to the use of chemical and orbital selectivity of XANES technique as a tool to investigate the spin-orbit coupling in Pt (Pt0, 5d9) and Hf (Hf0, 5d2) elements under high pressures. Unlike observed for Pt, the calculated branching ratio determined from the integrated intensities of the Hf L2,3 white lines shows that the spin-orbit coupling increases monotonically as a function of applied pressure. This behavior was related to the superconducting and structural properties displayed by this element at high pressures / Doutorado / Física / Doutora em Ciências

Page generated in 0.086 seconds