• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 353
  • 113
  • 50
  • 47
  • 12
  • 9
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 882
  • 283
  • 162
  • 118
  • 110
  • 105
  • 104
  • 103
  • 102
  • 94
  • 78
  • 74
  • 72
  • 61
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Intersection Safety Analysis Methodology for Utah Roadways

Gibbons, Joshua Daniel 01 May 2018 (has links)
Roadway safety continues to be a priority for the Utah Department of Transportation (UDOT) Traffic and Safety Division. UDOT has participated in and managed several research projects in recent years to determine the roadway segments of highest safety concern in the state. This research has provided UDOT with more tools to assist in safety project prioritization. Researchers in Department of Civil and Environmental Engineering at Brigham Young University (BYU) have worked with UDOT and the Statistics Department at BYU to create two network screening statistical tools called the Utah Crash Prediction Model (UCPM) and the Utah Crash Severity Model (UCSM) to analyze roadway segment safety. The Roadway Safety Analysis Methodology (RSAM) was developed as a process to run these segment models. Because a significant portion of crashes occur at intersections, there is a need to analyze roadway safety specifically at intersections. This research focuses on the development of the Utah Intersection Crash Prediction Model (UICPM) and the Intersection Safety Analysis Methodology (ISAM). The UICPM is a Bayesian generalized linear model that determines crash distributions for each intersection based on roadway characteristics and historical crash data. The observed number of crashes at each intersection is compared with the crash distribution, and a percentile value is calculated as the probability that the number of crashes occurring at an intersection in a particular year is less than or equal to the average annual number of crashes. A high percentile value indicates that more crashes were observed than expected and the intersection is a hot spot and should be considered for safety improvements. All intersections are ranked at the state, UDOT Region, and county levels based on the percentile value, the higher ranks having higher percentile values. The ISAM is the three-step process that was developed to execute the UICPM. The first step is to prepare the model input by formatting and combining the roadway characteristics and crash data files. Crashes are assigned to intersections if they fall with the functional area of an intersection. Due to data limitations, the ISAM is currently being used only for intersections of at least two state routes. It is anticipated that, as more data are made available, the ISAM will function properly for intersections of non-state routes as well. The second step is to execute the UICPM using the R GUI tool and R software. The third step is to create a two-page Intersection Safety Analysis Report (ISAR) for intersections of interest and maps of the state, UDOT Regions, and counties with the model results. Parts of the ISARs are auto-generated and the rest is entered manually by an analyst. The two-page ISARs will be used by UDOT Regions to prioritize intersection safety projects in their respective areas.
422

Roadway Safety Analysis Methodology

Mineer, Samuel Thomas 01 May 2016 (has links)
The Utah Department of Transportation (UDOT) Traffic and Safety Division continues to advance the safety of the state roadway network through network screening and decision making tools. In an effort to aid UDOT in meeting this goal, the Department of Civil and Environmental Engineering at Brigham Young University (BYU) has worked with the Statistics Department in developing analysis tools for highway safety, specifically the Utah Crash Prediction Model (UCPM) and the Utah Crash Severity Model (UCSM). Additional tools and methodologies, such as the "Hot Spot Identification and Analysis," have been created to summarize the roadway characteristics, crash data, and possible countermeasures of roadway segments with safety problems.This research focuses on the creation of a three part "Roadway Safety Analysis" methodology, which applies and automates the cumulative work of recently completed highway safety research conducted for UDOT. The first part is to prepare the roadway data and crash data for the statistical analysis. The second part is to perform the network screening statistical analysis; rank the segments by state, UDOT Region, and county; and select segments of interest. The third part is to compile and publish the Roadway Safety Analysis reports for the selected segments of interest. These parts are accomplished using the automation tools and graphical user interfaces (GUIs), which are documented in three respective volumes of user manuals. The automation tools and GUIs were developed with checks and processes to allow the Roadway Safety Analysis methodology to be completed with new, updated roadway and crash datasets.The Roadway Safety Analysis methodology allows future iterations of the UCPM and UCSM analysis and compilation of the Roadway Safety Analysis reports to be conducted in a user friendly environment. A series of critical data columns were identified to communicate the need for data consistency for future iterations of this safety research. An example of the entire process of the Roadway Safety Analysis methodology is given to illustrate how the three parts tie together. The overall process has automated data processing tasks, which saves time and resources for the analyst to investigate possible safety measures for segments of interest. Recommendations for future highway safety research are given, including continued development of the Roadway Safety Analysis methodology, an analysis of intersections and horizontal curves, the implementation of the Roadway Safety Analysis methodology to other states, and the advancement of safety countermeasures and geospatial tools for highway safety research.
423

Avaliação do nível de serviço em estradas de faixa de rodagem única segundo o HCM 2010

Azeredo, Válter Iúri Valente de January 2012 (has links)
Tese de mestrado integrado. Engenharia Civil. Área de Especialização de Vias de Comunicação. Faculdade de Engenharia. Universidade do Porto. 2012
424

Seleção de interseções com potencial de redução da sinistralidade : aplicação do HSM

Martins, Joana Filipa Carvalho January 2013 (has links)
Tese de Mestrado Integrado. Engenharia Civil (Vias de Comunicação). Faculdade de Engenharia. Universidade do Porto. 2013
425

Florida Expressways and the Public Works Career of Congressman William C. Cramer

Whitney, Justin C 08 November 2008 (has links)
Since the introduction of automobiles to Florida in the 1900s, highways have been integral to the state's economy. In the 1950s, statewide limited-access highway projects were introduced in the form of a state-operated turnpike and the national Interstate highway system. This paper traces the simultaneous development of both expressway systems, outlining the previous condition of Florida's highways, the initiatives taken by Florida's governors, and especially the role of William C. Cramer of St. Petersburg, Florida's first Republican United States Congressman since Reconstruction. In the House of Representatives, as a ranking member of the Roads Subcommittee of the Public Works Committee, Cramer played a prominent role in shaping federal highway policies, addressing corruption in highway politics, keeping Interstates toll-free, and preventing highway funds from being diverted to other programs. He battled proponents of the Sunshine State Parkway, which ran parallel to designated Interstate routes and threatened to make them unfeasible. As the capstone to his public works career, Cramer secured additional mileage to provide for the 'missing link' between Tampa Bay and Miami, which had not been authorized in the original federal outlays. The designation extended a route through St. Petersburg.
426

SEGMENTATION STRATEGIES FOR ROAD SAFETY ANALYSIS

Green, Eric R. 01 January 2018 (has links)
This dissertation addresses the relationship between roadway segment length and roadway attributes and their relationship to the efficacy of Safety Performance Function (SPF) models. This research focuses on three aspects of segmentation: segment length, roadway attributes, and combinations of the two. First, it is shown that choice of average roadway segment length can result in markedly different priority lists. This leads to an investigation of the effect of segment length on the development of SPFs and identifies average lengths that produce the best-fitting SPF. Secondly, roadway attributes are filtered to test the effect that homogeneity has on SPF development. Lastly, a combination of segment length and attributes are examined in the same context. In the process of conducting this research a tool was developed that provides objective goodness-of-fit measures as well as visual depictions of the model. This information can be used to avoid things like omitted variable bias by allowing the user to include other variables or filter the database. This dissertation also discusses and offers examples of ways to improve the models by employing alternate model forms. This research revealed that SPF development is sensitive to a variety of factors related to segment length and attributes. It is clear that strict base condition filters based on the most predominant roadway attributes provide the best models. The preferred functional form was shown to be dependent on the segmentation approach (fixed versus variable length). Overall, an important step in SPF development process is evaluation and comparison to determine the ideal length and attributes for the network being analyzed (about 2 miles or 3.2 km for Kentucky parkways). As such, a framework is provided to help safety professionals employ the findings from this research.
427

Development of a Bicycle Level of Service Methodology for Two-Way Stop-Controlled (TWSC) Intersections

Johnston, Nathan R 01 March 2014 (has links)
This thesis fills a missing piece in research on multimodal performance measures for traffic on streets and highways. The Highway Capacity Manual (HCM) published by the Transportation Research Board (TRB) provides Level of Service (LOS) methodologies which enable engineers and planners to evaluate the overall performance of roadways and highways based on the physical characteristics of facilities. This allows for the evaluation of those facilities and offers a means for recognizing issues and planning, designing, implementing, and ultimately assessing improvements. Originally, level of service was developed for automotive traffic only, but with recent developments as part of the complete streets movement, the performance of infrastructure for alternative transportation modes have also started being assessed in this fashion. There are methodologies in HCM 2010 for bicycle traffic at signalized intersections, all-way stop-controlled intersections, roadway and highway segments, but as of yet, no bicycle level of service methodology exists for two-way stop-controlled intersections. This work attempts to fill this gap. The methodology utilized for this report includes video collection of sample two-way stop-controlled intersections throughout California, collection of survey responses from viewers of video, and linear regression of collected survey responses with physical attributes of each sample intersection as the explanatory variables. Data was analyzed from both combined and individual street movements to determine the final equation set. The final methodology involves two separate procedures for major and minor streets at TWSC intersections. Final factors deemed significant in bicycle level of service analysis include sight distances, speed limits, presence of bus stops, presence and type of bicycle infrastructure, street widths and types of lanes present, pavement quality, and traffic flows.
428

Performance measurement for highway winter maintenance operations

Qiu, Lin 01 January 2008 (has links)
Many highway maintenance agencies are facing an increased pressure to utilize their limited resources while still achieving the optimum winter highway maintenance outcome. Also there is a tendency to privatize maintenance operation, in order to improve the road user's satisfaction by bringing more competition to winter maintenance operations. Given this context the purpose of this research is to develop an effective performance measurement system that can evaluate how well agencies have conducted winter maintenance activities to meet the road user's expectations of safety and mobility. Though there have been performance measurement studies conducted in the winter maintenance area, few of them are comprehensive enough to evaluate winter maintenance outcomes, while at the same time taking storm severity, road system characteristics, and maintenance effort together into consideration. To address this deficiency, several particular challenges must be considered: first, how to evaluate the storm severity for individual storms; second, how to evaluate maintenance outcomes using a series of quantitative measures; and third, what are the appropriate targets that maintenance outcomes can be compared with, considering outcomes are sensitive to maintenance input, weather severity, road classifications, and traffic specifications. To address these questions: A storm severity index is developed; studies on effects of weather were quantitatively synthesized by meta-analysis; effects of weather and maintenance on road surface conditions are estimated by MLR; SEM (Structural Equation Modeling) is applied to estimate the direct and indirect effects of maintenance on mobility and Multiple Classification Analysis (MCA) was applied to estimate the contribution of winter maintenance to safety. The final result of this research is an applicable winter maintenance performance measurement system. It informs maintenance agencies where they excel at and where improvements are needed for the specified goals. Further, the developed road surface condition prediction model can be used as a predictive tool to allow agencies to conduct "what if" experiments that will lead to optimization of maintenance practice over time. The relative magnitudes of the effects of different maintenance methods on mobility and safety that is estimated by the models will enable agencies to assign priorities, and to compare maintenance outcomes based on the input resources.
429

Utah Off-Highway Vehicle Owners' Specialization and Its Relationship to Environmental Attitudes and Motivations

Smith, Jordan W 01 December 2008 (has links)
Off-Highway Vehicle (OHV) use has grown enormously on Utah’s public lands and is one of the most contentious and difficult issues for federal, state, and local land management agencies to address and provide for. Despite OHV use’s meteoric rise in popularity and its ongoing public conflicts, little is known about OHV recreationists. This thesis develops a typology that identifies within-activity differences related to recreation specialization; it also determines differences in OHV owners’ environmental attitudes and motivations. Findings show Utah’s owners comprise a range of use along the recreation specialization continuum. Results also indicate that an OHV owners’ specialization level is not a significant determinant of either their environmental attitude or four out of the seven given motivations for participation in the activity. Specialization is, however, directly correlated to three specific motivation domains: achievement/stimulation, independence, and meeting new people. Overall, the recreation specialization framework, broadly interpreted, was successfully utilized to develop a typology of use which can inform resource management decisions.
430

Traffic Operations Analysis of Merging Strategies for Vehicles in an Automated Electric Transportation System

Freckleton, Derek Rulon 01 May 2012 (has links)
Automated Electric Transportation (AET) is a concept of an emerging cooperative transportation system that combines recent advances in vehicle automation and electric power transfer. It is a network of vehicles that control themselves as they traverse from an origin to a destination while being electrically powered in motion – all without the use of connected wires. AET's realization may provide unparalleled returns in the form of dramatic reductions in traffic-related air pollution, our nation’s dependence on foreign oil, traffic congestion, and roadway inefficiency. More importantly, it may also significantly improve transportation safety by dramatically reducing the number of transportation-related deaths and injuries each year as it directly addresses major current issues such as human error and adverse environmental conditions related to vehicle emissions. In this thesis, a logical strategy in transitioning from today’s current transportation system to a future automated and electric transportation system is identified. However, the chief purpose of this research is to evaluate the operational parameters where AET will be feasible from a transportation operations perspective. This evaluation was accomplished by performing lane capacity analyses for the mainline, as well as focusing on the merging logic employed at freeway interchange locations. In the past, merging operations have been known to degrade traffic flow due to the interruptions that merging vehicles introduce to the system. However, by analyzing gaps in the mainline traffic flow and coordinating vehicle movements through the use of the logic described in this thesis, mainline traffic operations can remain uninterrupted while still allowing acceptable volumes of merging vehicles to enter the freeway. A "release-to-gap" merging algorithm was developed and utilized in order to maximize the automated flow of traffic at or directly downstream of a freeway merge point by maximizing ramp flows without causing delay to mainline vehicles. Through these tasks, it is the hope of this research to aid in identifying the requirements and impending impacts of the implementation of this potentially life-altering technology.

Page generated in 0.0415 seconds