Spelling suggestions: "subject:"hiperelásticos"" "subject:"viscoelástico""
1 |
Análise não-linear geométrica de músculos esqueléticos via Método dos Elementos Finitos posicional / Geometrical nonlinear analysis of skeletal muscles via positional Finite Element MethodQuintero Ramírez, Carolina 04 October 2018 (has links)
A simulação computacional em biomecânica permite analisar o comportamento dos movimentos do corpo humano, diminuindo, e inclusive evitando ensaios experimentais invasivos. A locomoção humana resulta das forças desenvolvidas pelos músculos esqueléticos. Os mecanismos que produzem essas forças ainda são um tema de investigação aberto. O pouco entendimento desse fenômeno tem levado a subestimar propriedades importantes nos modelos mecânicos, as quais são essenciais para a simulação do comportamento do músculo. O objetivo desta tese foi desenvolver um código computacional que permita obter de maneira precisa e exata, a representação numérica do comportamento mecânico dos músculos esqueléticos. O código visa compilar diversas pesquisas numéricas de tal forma que a simulação possa considerar os fenômenos essenciais no comportamento mecânico do músculo e posteriormente avaliar sua influência na geração de força muscular. A formulação utilizada é baseada no Método dos Elementos Finitos (MEF), que é escrito em função das posições nodais. Os músculos esqueléticos foram discretizados por elementos planos e sólidos e uma análise não linear geométrica foi realizada. O programa considera fibras longas colocadas dentro de um domínio contínuo (passivo) sem adicionar graus de liberdade ao sistema). Um modelo transversalmente isotrópico, hiperelástico quase incompressível foi utilizado para simular o tecido muscular. A energia livre de Helmholtz foi usada para modelar o comportamento muscular ativo e passivo do músculo. Os resultados da pesquisa mostram que o código computacional é adequado para representar um modelo hiperelástico quase incompreensível no modelo transversalmente isotrópico. Permitindo considerar o músculo esquelético em duas partes distintas: intramuscular (matriz) e extracelular (fibras) utilizando a energia livre de Helmholtz e com ativação uniaxial, tanto em modelos estáticos como dinâmicos não lineares. Os resultados numéricos demonstraram que o algoritmo implementado é adequado para realizar análises não lineares geométricas de músculos esqueléticos via MEF. A condição de incompressibilidade foi comprovada nos problemas com materiais hiperelásticos. Também, foi demostrada a necessidade de realizar uma análise de convergência para as fibras. Finalmente, foi notada a complexidade na construção e na análise estrutural dos músculos esqueléticos, sendo necessário continuar desenvolvendo estratégias numéricas para maior aprofundamento. / Computational Modeling in Biomechanics allows analyzing of human body\'s movements, decreasing and some cases avoiding invasive experimental tests. The human locomotion is the result of forces developed by skeletal muscles. The mechanisms that produce this force are still an open research topic. The little knowledge of this phenomenon has led to underestimating important properties in mechanical models. The goal of this thesis was developed a computer code to obtain, in a precise and exact manner, the numerical representation of the mechanical behavior of skeletal muscles. The code aims to compile several numerical research, such that the simulation can consider the essential phenomena in mechanical behavior and then evaluate their influence in the muscle strength development. The used formulation is based on the Finite Element Method (FEM), which is written as a function of nodal positions. The skeletal muscles were discretized by plane and solid elements, and a geometrically nonlinear analysis was performed. The program considers long fibers placed inside a continuum domain (passive) without adding degrees of freedom to the system. A transversely isotropic model almost incompressible hyperelastic model was used to simulate the muscle tissue. The Helmholtz free energy was used to model the active and passive muscle behavior of muscle. The findings from the research indicate that the computer code is adequate to represent a transversely isotropic model almost incompressible hyperelastic model. The code allows skeletal muscle to be considered in two parts: intramuscular (matrix) and extracellular (fibers) using the Helmholtz free energy and with uniaxial activation, in nonlinear statical and dynamical models. The results support the model implemented for nonlinear geometrical analyzes of skeletal muscle using FEM. The almost incompressibility condition was tested in problems with hyperelastic materials. Also, numerical simulations confirm that a convergence analyzes for fibers is always required. Finally, it was noted the complexity in the construction and the structural analyzes of skeletal muscles, being necessary to continue developing numerical strategies for further deepening.
|
2 |
Biomecánica de la mama: aplicación del método de los elementos finitos a la localización de tumores en mamografías y a la simulación de mamoplastias de aumentoLapuebla Ferri, Andrés 21 October 2013 (has links)
The breast is the most distinctive organ of women¿s anatomy, and it is vital to
support lactation. It is also an important organ in the social relations and affective
life of women. For these reasons, the studies related to women¿s breasts have
an undoubtable social importance, and this fact propitiates the collaboration of
multidisciplinary research teams and synergy between medical and engineering
knowledge and techniques.
The research conducted in the present thesis addresses the study and computerized
simulations of breast biomechanics through the use of the finite element method.
Given that the breast is a complex organ, this study focuses on breast mechanical
aspects analyzed from two real clinical situations of two patients. The first
analysis consists of the study of a breast affected by a tumor. A mammography
is simulated, and the results of the simulation are compared with those obtained
during the clinical practice. In the second analysis, an augmentation mammoplasty
is simulated, describing the computer model of a patient before the intervention.
In this study, the role played by computer simulations in the prediction of clinical
outcomes in both case studies is enforced. There are a vast number of studies concerning
mammography simulations, but not in the field of augmentation mammoplasties.
Moreover, there are still many computational aspects which need further
analysis and research.
Female breasts are heterogeneous organs consisting of soft tissues that provide a
complex mechanical response. In the present thesis, and with the aim of correctly
performing the corresponding computer simulations, a hyperelastic formulation of
the breast tissues is used, and the equations are implemented in non-linear finite
element models. The subsequent and necessary validation of the simulations is done
by comparing the simulation results with the clinical outcomes of the patients / Lapuebla Ferri, A. (2013). Biomecánica de la mama: aplicación del método de los elementos finitos a la localización de tumores en mamografías y a la simulación de mamoplastias de aumento [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/32957
|
3 |
Análise dinâmica não-linear de uma membrana hiperelástica esférica / Nonlinear dynamic analysis of a hyperelastic spherical membraneAmaral, Pedro Felipe Tavares do 05 February 2018 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2018-05-03T11:57:05Z
No. of bitstreams: 2
Dissertação - Pedro Felipe Tavares do Amaral - 2018.pdf: 5863877 bytes, checksum: 084454dc18411f245114eb910cfa2474 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-05-03T13:20:55Z (GMT) No. of bitstreams: 2
Dissertação - Pedro Felipe Tavares do Amaral - 2018.pdf: 5863877 bytes, checksum: 084454dc18411f245114eb910cfa2474 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-05-03T13:20:55Z (GMT). No. of bitstreams: 2
Dissertação - Pedro Felipe Tavares do Amaral - 2018.pdf: 5863877 bytes, checksum: 084454dc18411f245114eb910cfa2474 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-02-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In the present work, studies about the nonlinear static and dynamic behavior of a spherical membrane are presented. This membrane is composed by a hyperelastic, incompressible homogeneous and isotropic material, which is defined by either of the two distinct constitutive models: Mooney-Rivlin or the Neo-Hookean model. The equilibrium equations are obtained from the large-strain theory, by utilizing a variational formulation and by subjecting the membrane to an uniformly distributed internal radial pressure differential. From the nonlinear static analysis, internal membrane tensions and strains are obtained. From the dynamic analysis, the frequency-amplitude relation, the linear stability analysis, the time response, bifurcation diagrams, resonance curves and basins of attraction are obtained. As a first step, there is an analysis on a membrane composed by the same experimental material, which is described by the two different constitutive models presented in this work. It is observed that the dynamic responses are considerably distinct, due to the difference between the geometrical nonlinearities that each constitutive model insert on the equilibrium equation. The Neo-Hookean model has a lower pre-stretching limit, and its attraction basins are more eroded and irregular than the Mooney-Rivlin, that is still stable on regions of larger vibration amplitudes. Then, the influence of the Mooney-Rivlin parameter (α) is evaluated, and it is found that this parameter is the main source of the differences between the constitutive models, modifying the stability, nonlinear vibrations and also influencing on the loss or gain of the global rigidity of the membrane. / Neste trabalho são apresentados estudos dos comportamentos não lineares, estático e dinâmico, de uma membrana de geometria esférica composta por um material hiperelástico, incompressível, homogêneo e isotrópico definido por um entre esses dois modelos constitutivos: Mooney-Rivlin ou Neo-Hookeano. As equações de equilíbrio são obtidas a partir da teoria de grandes deformações, utilizando uma formulação variacional e considerando a membrana esférica submetida a uma pressão interna na direção radial uniformemente distribuída. A partir da análise não linear estática, encontram-se as tensões e as extensões radiais da membrana e da análise dinâmica obtêm-se as relações frequência-amplitude, a análise não linear da estabilidade, as respostas no tempo, os diagramas de bifurcação, as curvas de ressonância e as bacias de atração da membrana. Primeiramente, analisa-se a membrana composta por um mesmo material experimental e descrita pelos dois modelos hiperelásticos avaliados nesta dissertação. Observa-se que as respostas dinâmicas são consideravelmente distintas entre si devido à diferença entre as não linearidades geométricas que cada modelo constitutivo insere na equação de equilíbrio, sendo que o modelo Neo-Hookeano apresenta menor limite de pré-carregamento com bacias de atração mais erodidas e menos uniformes quando comparado ao modelo de Mooney-Rivlin, que ainda apresenta estabilidade em regiões de maior amplitude de vibração. Posteriormente, avalia-se a influência do parâmetro do material do tipo Mooney-Rivlin (α), que é a principal fonte das diferenças entre os modelos constitutivos, na estabilidade e nas vibrações não lineares da membrana esférica, observando-se que o parâmetro influência na perda ou no ganho de rigidez global do problema.
|
Page generated in 0.0655 seconds