• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lateralization of hippocampal functions in domestic chicks (Gallus gallus domesticus)

Morandi Raikova, Anastasia 12 November 2021 (has links)
The domestic chick (Gallus gallus domesticus) has been widely used as an animal model to investigate spatial orientation and the neural mechanisms underlying this function. In all vertebrate species the hippocampus plays an essential role in spatial orientation. Since the hippocampus is a bilateral structure, it is important to investigate the specific role of the left and the right hippocampi in spatial processing. Although, the domestic chick has been often used as animal model to assess cognitive lateralization, the involvement of the left and the right hippocampal formation in spatial orientation has been poorly investigated in this model. Behavioral studies using monocular eye occlusion have shown that in chicks the left eye-system (right hemisphere) is involved in the elaboration of spatial relational information, while the right eye-system (left hemisphere) processes local information. However, while visual lateralization in chicks had been traditionally considered to be induced by embryonic light exposure, recent studies suggest the presence of structural and behavioural asymmetries also in dark-incubated chicks. Thus, the main aim of this thesis was to test the lateralization of hippocampal functions in dark incubated chicks, both in spatial and non-spatial tasks. In the first study dark-incubated chicks were trained to orient in a large circular arena using spatial relational information provided by free-standing objects. Once chicks reached a learning criterion they were tested binocularly or under a monocular eye-occlusion condition. This study provided the first demonstration that domestic chicks are able to orient by relational spatial information provided by free-standing objects, in binocular vision conditions. However, if either one of the two eyes was occluded, chicks failed the orientation task. These results show that at least in dark-incubated chicks binocular integration is needed to solve this spatial orientation task. We also investigated if chicks have a preference to orient by local or spatial information provided by free-standing objects and if this ability is influenced by eye occlusion. Chicks preferred to use local over spatial cues to orient, both in binocular and monocular conditions (independently of which eye was occluded). These results indicate that local cues are processed by both eye-systems and do not require access to information from both eyes, contrary to relational spatial cues. Using the same setup, in the second study we directly investigated the involvement of chicks’ left and right hippocampal formation during orientation by free-standing objects. For this purpose we performed an immunohistochemical staining of the immediate early gene product c-Fos (a neural activity marker). Two independent groups of dark-incubated chicks were trained to find food in the large circular arena and the level of hippocampal activation was compared between the two groups. One group was trained to orient exclusively by local cues, while the other was orienting by spatial relational information provided by free-standing objects. This revealed selective activation of the right hippocampus during orientation by spatial relational information in dark-incubated chicks. While monocular occlusion has often been used to test lateralization of spatial functions in chicks, it is still unclear whether this manipulation affects hippocampal activation. The aim of the third study was to clarify this issue, by exposing dark-incubated chicks to a novel environment in conditions of monocular occlusion or binocular vision. Activation of the hippocampal formation was once again measured by c-Fos expression. Exposure to a novel environment is known to trigger hippocampal activation in different animals, including domestic chicks. As expected, exposure to the novel environment activated the hippocampus in binocular vision conditions. However, if either one of the eyes was occluded, the hippocampal c-Fos expression did not rise above what observed in the baseline condition (chicks maintained in a familiar environment). Thus, successful hippocampal response to a novel environment requires input from both eyes. Our results also suggest that monocular occlusion equally affects the left and the right hippocampus. Overall, access to information from both eyes plays a crucial role for the acquisition of a spatial map of a novel environment, in line with the behavioral results of the first study. Moreover, a task independent lateralization effect, with higher c-Fos expression in the left compared to the right hippocampus, could be observed in all the experimental conditions. This confirms the presence of neuroanatomical lateralization in dark-incubated chicks. The last study investigated whether chicks’ hippocampus would also respond to novel social stimuli, in line with the activation observed in this structure after exposure to a novel environment. Only few studies have directly investigated the involvement of birds’ hippocampal formation in social functions. Here, the hippocampal activation was compared between chicks exposed to an unfamiliar conspecific vs. chicks exposed to a familiar one. We found that the ventral and dorsomedial portion of the right hippocampus of dark-incubated chicks responds to an unfamiliar individual. This provides the first demonstration of hippocampal sensitivity to social novelty in birds. Overall the studies performed in this thesis indicate a selective lateralized involvement of domestic chicks’ hippocampal formation not only in spatial, but also in social functions.
2

Conexões aferentes da área de transição amígdalo-piriforme (APir) no rato. / Afferent connections of the amygdalopiriform transition area (APir) of the rat.

Santiago, Adriana Celestino 17 November 1999 (has links)
A área de transição amígdalo-piriforme (APir) está situada na confluência dos córtices piriforme, periamigdalóide e entorrinal lateral (ENTl). Com técnicas de rastreamento retrógrado foi observado que as principais aferências da APir se originam do bulbo olfativo, dos córtices piriforme, insular disgranular e agranular posterior, perirrinal, da formação hipocampal e da amígdala. Outras estruturas como o núcleo da banda diagonal de Broca, o pálido ventral, a substância inominada sublenticular, o tálamo da linha média, o núcleo dorsal da rafe, o locus coeruleus e a área parabraquial são fontes de aferências mais modestas a esta área de transição. A APir e o ENTl diferem no que diz respeito à origem de suas aferências mesocorticais, amigdalianas e talâmicas. Assim, a APir está em condições de integrar informações olfativas, gustativas, interoceptivas gerais e polissensoriais complexas e, através de suas projeções para a amígdala expandida, striatum ventral e formação hipocampal, influenciar a expressão de comportamentos motivados. / The amygdalo-piriform transition area (APir) lies at the junction of the piriform, periamygdaloid and entorhinal cortices. The afferent connections of this olfactory district were studied with retrograde tracing methods using the cholera toxin B subunit and Fluoro-Gold as tracers. Our retrograde experiments showed that the main input sources to APir derive from the olfactory bulb, mesocortical and allocortical areas including the dysgranular insular, posterior part of the agranular insular, piriform, lateral entorhinal and perirhinal cortices, temporal field CA1 of Ammon horn, ventral subiculum, as well as the endopiriform nucleus and the amygdaloid complex (anterior basomedial, posterior basolateral and anterior, posterolateral, posteromedial cortical nuclei). Several other structures among which the diagonal band, ventral pallidum, sublenticular substantia inominatta, midline thalamic nuclei, dorsal raphe nucleus, locus coeruleus and parabrachial area provide more modest inputs to APir. Our results suggest in addition that projections from mesocortical areas, hippocampal formation and the posterior basolateral amygdaloid nucleus to APir are topographically organized. Fluoro-Gold injections in the ventrolateral entorhinal cortex indicate that the afferent connections of this district differ in many regards from the afferent connections of APir. Cortical and amygdaloid inputs suggest tha APir is chiefly involved in the processing of olfactory, gustatory, visceral and somesthesic information, whereas the ventrolateral entorhinal cortex seems to be more crucially related with visual and auditory processes. APir is also less densely projected upon by midline thalamic nuclei than the lateral entorhinal cortex. Taken as a whole our results suggest that APir is in position to relay highly integrated olfactory, gustatory, interoceptive and somesthesic information to the extended amygdala, ventral striatum and ventral subiculum, and as such modulate the expression of motivated and emotional behavior.
3

Conexões aferentes da área de transição amígdalo-piriforme (APir) no rato. / Afferent connections of the amygdalopiriform transition area (APir) of the rat.

Adriana Celestino Santiago 17 November 1999 (has links)
A área de transição amígdalo-piriforme (APir) está situada na confluência dos córtices piriforme, periamigdalóide e entorrinal lateral (ENTl). Com técnicas de rastreamento retrógrado foi observado que as principais aferências da APir se originam do bulbo olfativo, dos córtices piriforme, insular disgranular e agranular posterior, perirrinal, da formação hipocampal e da amígdala. Outras estruturas como o núcleo da banda diagonal de Broca, o pálido ventral, a substância inominada sublenticular, o tálamo da linha média, o núcleo dorsal da rafe, o locus coeruleus e a área parabraquial são fontes de aferências mais modestas a esta área de transição. A APir e o ENTl diferem no que diz respeito à origem de suas aferências mesocorticais, amigdalianas e talâmicas. Assim, a APir está em condições de integrar informações olfativas, gustativas, interoceptivas gerais e polissensoriais complexas e, através de suas projeções para a amígdala expandida, striatum ventral e formação hipocampal, influenciar a expressão de comportamentos motivados. / The amygdalo-piriform transition area (APir) lies at the junction of the piriform, periamygdaloid and entorhinal cortices. The afferent connections of this olfactory district were studied with retrograde tracing methods using the cholera toxin B subunit and Fluoro-Gold as tracers. Our retrograde experiments showed that the main input sources to APir derive from the olfactory bulb, mesocortical and allocortical areas including the dysgranular insular, posterior part of the agranular insular, piriform, lateral entorhinal and perirhinal cortices, temporal field CA1 of Ammon horn, ventral subiculum, as well as the endopiriform nucleus and the amygdaloid complex (anterior basomedial, posterior basolateral and anterior, posterolateral, posteromedial cortical nuclei). Several other structures among which the diagonal band, ventral pallidum, sublenticular substantia inominatta, midline thalamic nuclei, dorsal raphe nucleus, locus coeruleus and parabrachial area provide more modest inputs to APir. Our results suggest in addition that projections from mesocortical areas, hippocampal formation and the posterior basolateral amygdaloid nucleus to APir are topographically organized. Fluoro-Gold injections in the ventrolateral entorhinal cortex indicate that the afferent connections of this district differ in many regards from the afferent connections of APir. Cortical and amygdaloid inputs suggest tha APir is chiefly involved in the processing of olfactory, gustatory, visceral and somesthesic information, whereas the ventrolateral entorhinal cortex seems to be more crucially related with visual and auditory processes. APir is also less densely projected upon by midline thalamic nuclei than the lateral entorhinal cortex. Taken as a whole our results suggest that APir is in position to relay highly integrated olfactory, gustatory, interoceptive and somesthesic information to the extended amygdala, ventral striatum and ventral subiculum, and as such modulate the expression of motivated and emotional behavior.
4

Mapeamento das conexões eferentes e aferentes do núcleo cuneiforme. / The connections of the cuneiform nucleus.

Souza, Cibele Carla Guimarães de 09 August 2018 (has links)
O núcleo cuneiforme é um sítio neural mobilizado após a exposição ao predador, ou ao odor do gato e, a sua estimulação promove respostas defensivas como congelamento motor e fuga. Trabalhos mostram que lesões que acometem o setor dorsal rostral e a parte ventrolateral caudal da substância cinzenta periaquedutal e o núcleo cuneiforme abolem as respostas defensivas e aumentam os comportamentos exploratórios. Com isso, postulamos que o núcleo cuneiforme seria importante na modulação de respostas comportamentais defensivas e, dessa forma, investigamos as suas projeções eferentes e aferentes, para que possamos amplificar o conhecimento acerca do circuito responsivo a ameaça predatória. Para isso, foram realizadas injeções iontoforéticas unilaterais de leucoaglutinina do Phaseolus vulgaris no núcleo cuneiforme para o estudo de suas eferências e, injeções iontoforéticas unilaterais de Fluorogold no núcleo cuneiforme para o estudo de suas aferências. Através dos resultados obtidos, observamos que o núcleo cuneiforme apresenta conexões com estruturas importantes para expressão do comportamento de defesa e estaria em posição de receber informações das pistas do predador, uma vez que é aferentado por estruturas que compõem o circuito responsivo a ameaça predatória (i.e núcleo hipotalâmico anterior, parte dorsomedial do núcleo ventromedial hipotalâmico, parte ventrolateral do núcleo pré-mamilar dorsal e coluna dorsolateral da substância cinzenta periaquedutal). Com os dados das eferências postulamos que o núcleo cuneiforme estaria em posição de retroalimentar o circuito responsivo a ameaça predatória e participaria de um circuito neural que modularia a expressão das respostas de avaliação de risco frente ao predador. O colículo superior através de suas projeções eferentes mobilizaria a coluna dorsolateral da substância cinzenta periaquedutal e o núcleo cuneiforme. O último por sua vez, através das projeções para o núcleo septal medial modularia a geração do ritmo teta no eixo septo-hipocampal. Adicionalmente, o núcleo cuneiforme retroalimentaria a coluna dorsolateral da substância cinzenta periaquedutal, a porção dorsomedial do núcleo ventromedial hipotalâmico e o núcleo hipotalâmico anterior, que através de suas eferências mobilizaria o septo lateral rostral ventrolateral, que potencialmente influenciaria a formação hipocampal. / The cuneiform nucleus is a neural site mobilized after exposure to the predator, or cat odor, and its stimulation promotes defensive responses such as motor freezing and escape. Studies show that lesions affecting the rostral dorsal sector and the caudal ventrolateral part of the periaqueductal gray matter and the cuneiform nucleus abolish defensive responses and increase exploratory behavior. In this way, we postulate that the cuneiform nucleus would be important in the modulation of defensive behavioral responses and, in this way, we investigate the efferent and afferent projections of the cuneiform nucleus, so that we can amplify the knowledge about the \"predatory threat responsive circuit\". For this, unilateral iontophoretic injections of leucoagglutinin from Phaseolus vulgaris were performed in the cuneiform nucleus for the study of their eferences and, unilateral iontophoretic injections of Fluorogold in the cuneiform nucleus for the study of their afferences. Through the obtained results, we observed that the cuneiform nucleus has connections with structures important for the expression of the defense behavior and would be in a position to receive information from the clues of the predator, since it is inferred by structures that make up the \"predatory threat responsive circuit\" (ie anterior hypothalamic nucleus, dorsomedial part of the hypothalamic ventromedial nucleus, ventrolateral part of the dorsal pre-mammillary nucleus and dorsolateral column of the periaqueductal gray matter). With the data of the inferences we postulated that the cuneiform nucleus would be in position to feed back the \"predatory threat-responsive circuit\" and would participate in a neural circuit that would modulate the expression of the risk assessment responses to the predator. The superior colliculus through its efferent projections would mobilize the dorsolateral column of periaqueductal gray matter and the cuneiform nucleus. The latter, in turn, through the projections to the medial septal nucleus would modulate the generation of theta rhythm in the septohippocampal system. Additionally, the cuneiform nucleus would feedback the dorsolateral column of the periaqueductal gray matter, the dorsomedial portion of the hypothalamic ventromedial nucleus and the anterior hypothalamic nucleus, which through its efferences would mobilize the ventrolateral rostral lateral septum, which would potentially influence the hippocampal formation.
5

Resonanzverhalten und Netzwerkoszillationen in der hippokampalen Formation der Ratte in vitro

Boehlen, Anne 06 September 2010 (has links)
Rhythmische neuronale Aktivität spielt vermutlich eine wichtige Rolle in der Informationsverarbeitung im zentralen Nervensystem. Oszillationen neuronaler Netze sind heterogen, von der Hirnregion und ihrer Funktion abhängig und werden entsprechend ihrer Frequenz eingeteilt. Für ihre Entstehung sind über die Verschaltung der Neuronen und der synaptischen Übertragung hinaus insbesondere die Erregbarkeit und Oszillationseigenschaften einzelner Neurone von Bedeutung. Bestimmte Zellen der hippokampalen Formation wie zum Beispiel Sternzellen (SC) der Schicht II des Entorhinalkortex zeigen oszillatorische Aktivität und antworten verstärkt auf Stimuli einer bestimmten Frequenz – sie sind resonant. Beide Phänomene werden auf spezifische spannungsabhängige Leitfähigkeiten in der Membran zurückgeführt. Es stellte sich heraus, dass die Resonanzfrequenz von SCs durch das Muster der vorhandenen Leitfähigkeiten bestimmt wird und von der Position der Zelle entlang der dorso-ventralen Achse abhängt. Dieser Gradient ist bereits in frühen Entwicklungsstadien nachweisbar. Im Zuge der weiteren Entwicklung werden SCs weniger erregbar und der Bereich der Resonanzfrequenz dehnt sich nach dorsal aus. Pharmakologische Experimente ergaben, dass die Resonanz von SCs von HCN-Kanälen abhängt und von Kv7-Kanälen moduliert wird. Außerdem konnten zwei, bisher unbekannte Klassen von oszillatorischen Interneuronen beschrieben werden, deren Resonanz ebenfalls im Theta-Bereich liegt und auf ähnliche Leitfähigkeiten zurückgeführt werden kann. Weitere, auch CA1-Pyramidenzellen einschließende Experimente ergaben, dass HCN-Kanäle die allgemeine Voraussetzung für Resonanz zu sein scheinen während Kv7-Kanäle potente Modulatoren darstellen. Die pharmakologische Blockade dieser Kanäle unterbrach Netzwerkoszillation im Hippokampus. Dies unterstützt die These, dass bestimmte Leitfähigkeiten Neuronen Resonanzeigeschaften verleihen und somit wiederum Netzwerkoszillationen unterstützen. / Rhythmic neuronal activity is thought to be crucial for information processing in the brain. Neuronal network oscillations are heterogeneous, vary with brain region and type of information processed. They are classified according to their frequency content. Their generation relies on network circuitry, synaptic transmission and neuronal properties. Oscillatory behavior of individual cells has been particularly implicated. Different cell types within the hippocampal formation such as layer II stellate cells (SC) of the medial entorhinal cortex display oscillatory activity and are resonant, i.e., respond preferentially to stimuli of a given frequency. Voltage dependent ionic conductances have been suggested to give rise to these phenomena. It was found that resonance of SCs is defined by the composition of voltage-dependent channels embedded in their membrane and changes with their position along the dorsal-ventral axis. This gradient of SC properties develops during early postnatal life. During the transition to adulthood cells become less excitable and the range of resonance frequencies expands in the dorsal direction. Pharmacological experiments reveal the resonance of SCs to depend strongly on HCN-channels and to be modulated by Kv7-channels. Also, two previously unknown classes of oscillating interneurons were identified in the stratum radiatum of the CA1 region. These are targeted by neurons from the dentate gyrus, display frequency preferences in the theta range which relies on similar membrane conductances. Further experiments including CA1 pyramidal cells suggested HCN-channels to be the primary global requirement for resonance whereas Kv7-channels appear to be effective modulators. Pharmacological blockade of these channels disrupted ongoing network oscillations in the hippocampus. This supports the notion that specific ion channels support rhythmic activity of individual cells and in turn of entire networks.
6

Temporal patterns of spiking activity in the hippocampal formation

Hoyos, Jorge Jaramillo 19 January 2015 (has links)
Um eine Folge von Ereignissen aus unserem Gedächtnis abzurufen, ist zunächst ein Mechanismus erforderlich, der geordnete Sequenzen abspeichert. Hierbei stehen wir vor dem Problem, dass Ereignisse in unserem Leben auf einer Zeitskala von Sekunden oder mehr stattfinden. Auf der anderen Seite basiert das Lernen von Sequenzen auf der Plastizität von Synapsen im Gehirn, die durch die Abfolge von Aktionspotentialen von Nervenzellen im Millisekunden-Bereich gesteuert wird. Um dieses zeitliche Problem zu lösen, betrachten wir den Hippocampus, eine Struktur im Gehirn von Vertebraten, die für das explizite Gedächtnis (Fakten, Ereignisse, Sequenzen) entscheidende Bedeutung hat. In Nagetieren ist der Hippocampus sehr gut untersucht. Dort wurden Neurone gefunden, die nur dann aktiv sind, wenn das Tier innerhalb einer bestimmten Region seiner Umgebung ist: im sogenannten “Ortsfeld” des entsprechenden Neurons. Während der Bewegung durch ein Ortsfeld verschiebt sich die Phase der Nervenimpulse zu immer früheren Phasen der EEG-Oszillation. Dieses Phänomen wird als “Phasenpräzession” bezeichnet. Theoretische und experimentelle Untersuchungen zeigen, dass Phasenpräzession eine Lösung für unser Dilemma bietet: es führt zu einer zeitlich komprimierten Darstellung der Sequenz von Orten. In der vorliegenden Arbeit untersuche ich den Mechanismus und die Funktion von Phasenpräzession im Hinblick auf die Ausbreitung neuronaler Aktivität von einer Hirnregion zu einer anderen. Phasenpräzession konnte bereits in mehreren Regionen des Gehirns beobachtet werden. Bisher war unklar, ob Phasenpräzession in jeder dieser Regionen eigenständig entsteht, oder ob die Phasenpräzession von einer vorgeschalteten Population von Neuronen “vererbt” werden kann. Schliesslich diskutiere ich auf Grundlage der aktuellen Literatur, ob Phasenpräzession das Verhalten beeinflusst und gebe einen Ausblick auf zukünftige Forschungsmöglichkeiten auf diesem Gebiet. / The process of faithfully retrieving episodes from our memory requires a neural mechanism capable of initially forming ordered and reliable behavioral sequences. These behavioral sequences take place on a timescale of seconds or more, whereas the timescale of neural plasticity and learning is in the order of tens of milliseconds. To shed light on this dilemma, we turn to studies of hippocampal place cells in rodents, i.e., cells that selectively increase their firing rates in locations of the environment known as the place fields. Within a field, the firing phases of a place cell precess monotonically relative to the ongoing theta rhythm. This phenomenon, termed "phase precession", leads to a temporally compressed representation of the behavioral sequences experienced by the rodent, and the compressed timescale matches the requirements of neural plasticity. In this thesis, I study the mechanisms and functions of phase precession by proposing a framework that relies on the concept of inheritance: the simple idea that patterns of neural activity can be propagated from one region to another. Indeed, phase precession has been observed in several regions of the hippocampus and entorhinal cortex, and an important open question is whether phase precession emerges independently in each region, or conversely, whether phase precession can be "inherited" from an upstream neu ronal population. These results suggest that the presence of phase precession in different stages of the hippocampal circuit and other regions of the brain is indicative of a common source, a fact that can help us better understand the temporal spiking patterns in the brain. Finally, I critically review the current evidence for a behavioral role for phase precession and suggest a roadmap for future research in this field.
7

Analyse epileptischer Aktivität anhand intrinsischer optischer Signale und elektrophysiologischer Methoden in vitro nach Status epilepticus in vivo

Elsner, Mark Michael 28 October 2004 (has links)
Eine wichtige Folge des Status epilepticus ist die Entwicklung einer chronischen Epilepsie. Die genauen Mechanismen und die Kinetik der Epileptogenese sind weitestgehend unklar. Ziel der vorliegenden Arbeit war ein besseres Verständnis des Prozesses durch die In-vitro-Analyse von Lokalisation und Kinetik funktioneller Folgen des Status epilepticus in vivo. In kombinierten Hippokampus-entorhinaler Kortex Hirnschnittpräparaten von Wistar-Ratten nach elektrisch induziertem selbsterhaltendem Status epilepticus (self-sustaining status epilepticus, SSSE) wurden im Niedrig-Magnesium-Modell anfallsartige Ereignisse (AE) ausgelöst und untersucht. Die In-vitro-Analyse der AE wurde eine, vier und acht Wochen nach SSSE durchgeführt. Um das räumliche Verhalten der epileptischen Aktivität beurteilen zu können, wurde die Messung des extrazellulären Feldpotenzials mit der Analyse intrinsischer optischer Signale kombiniert. Im Verlauf nach SSSE kam es zu einer Latenzverkürzung bis zum Auftreten epileptischer Aktivität und zu einer Zunahme der AE-Frequenz. Vier und acht Wochen nach SSSE stieg der Anteil der AE mit großflächigem Ursprung signifikant an. Im Verlauf nach SSSE wurden außerdem zunehmend diskontinuierliche Ausbreitungsmuster der Anfallsaktivität beobachtet. Acht Wochen nach SSSE zeigten 50% der Präparate zudem eine zeitlich und räumlich von den AE unabhängige, hochfrequente Aktivität im Gyrus dentatus. Zusammenfassend wurden eine Latenzverkürzung und eine Zunahme der AE-Frequenz als Hinweise für eine gesteigerte Exzitabilität des Hirngewebes nach SSSE gesehen. Neben dem großflächigen Ursprung deutet auch die Zunahme diskontinuierlicher Ausbreitungsmuster auf eine gesteigerte Synchronizität des neuronalen Netzwerkes nach SSSE hin. Die autonome Aktivität im Gyrus dentatus spricht dafür, dass die in vorangegangenen Studien beschriebenen strukturellen Änderungen in dieser Region mit einer veränderten Funktionalität einhergehen. / The development of chronic epilepsy is a serious consequence of Status epilepticus. Little is known about the mechanisms and kinetic of the epileptogenic process. The aim of this md-thesis was the analysis of localisation and kinetic of functional deficits in vitro after Status epilepticus in vivo. Using the Low-Magnesium-Model, seizure-like events (SLE) were induced in combined hippocampal-entorhinal cortex slices of wistar rats after electrically induced self-sustaining Status epilepticus (SSSE). One, four and eight weeks after SSSE the in-vitro-analysis of SLE was performed. In order to determine onset and spread-pattern of epileptic activity, the measurement of the extracellular field-potential was combined with the imaging of intrinsic optical signals (IOS). In the time course after SSSE there was a reduction of the latency to onset of seizure activity and an increase of the SLE-frequency. Four and eight weeks after SSSE a significant increase of SLE with regional onset was found. In Addition, there was an increase of non-contiguous propagation of seizure activity. Eight weeks after SSSE 50% of the brain-slices showed autonomous high-frequent activity in the dentate gyrus. In conclusion a reduction of the latency to onset of seizure activity and an increase of the SLE-frequency were found. These changes are indicators of increased excitability after SSSE. Other than the regional onset, the non-contiguous spread-pattern also indicates increased synchronicity of the neuronal network after SSSE. The autonomous activity in the dentate Gyrus shows, that the previously described structural changes in this region lead to functional deficits.

Page generated in 0.1714 seconds