• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on the regeneration of the leech central nervous system

Verrall, Jason January 2002 (has links)
No description available.
2

Interfacing a Hirudo medicinalis Retzius Cell with Insulated Gate of MOSFET

Smith, Rachel M 01 December 2017 (has links) (PDF)
Much work has been done to study the external stimulation of nervous tissue as well as the transmission of neural signals to electronics. Peter Fromherz was one of the pioneers in this area of electrophysiology, with a series of experiments in the 1990s that aimed to characterize and optimize the interface between neural tissue and transistors. In this thesis, Kurt Sjoberg and I interfaced a Retzius cell isolated from a Hirudo medicinalis ganglion with the insulated gate of a MOSFET. The goal was to see change in membrane potential that could be related Fromherz’s original 1991 work. Our experimental setup utilized a classic electrophysiology technique, the current clamp. After varying the amplitude of the stimulating current pulses injected via microelectrode and ensuring the tight seal of the neuronal membrane with the insulated transistor gate, we found evidence of transistor voltage change that was temporally consistent with the elicited action potential of the neuron.
3

Synaptogenesis between identified neurons

Ching, Shim January 1995 (has links)
Serotonergic Retzius (R) neurons of the leech Hirudo medicinalis in culture reform inhibitory synapses with pressure sensitive (P) neurons while selectively reducing an extrasynaptic, depolarizing response to serotonin (5-HT) in the P neuron. We have examined if the selection of 5-HT responses is restricted to sites of contact between processes and growth cones of these cells. As measured by intracellular recording at the soma, focal application of 5-HT depolarized uncontacted P cell bodies, neurites and growth cones but not processes contacted by R cells. In patch clamp recordings of the depolarizing channels, application of 5-HT modulated channel activity in uncontacted but not in contacted growth cones. The selection of transmitter responses during synaptogenesis is therefore localized to discrete sites of contact specifically between synaptic partners. / Prior experiments have shown that tyrosine kinases play a crucial part in the selection of responses to 5-HT that occurs in the P cell (Catarsi and Drapeau, 1993). To further examine the mechanism responsible for this change in transmitter responses, we have utilized a monoclonal antibody against phosphotyrosine to determine if tyrosine phosphorylation could be detected in P and R cell pairs placed in contact. Our results revealed bright, punctate cytoplasmic staining in P cells paired with R cells. / Embryonic leeches were used to examine how R to P synaptogenesis proceeds in vivo. By filling the R and P neurons with different fluorescent dyes (Lucifer Yellow and Rhodamine-Dextran), confocal microscopy established that putative contact between neuropilar processes were made as early as 11 days of development. Spontaneous, chloride-dependent synaptic potentials in embryonic P cells similar to those seen in adult P cells were observed as early as day 10 of development.
4

Synaptogenesis between identified neurons

Ching, Shim January 1995 (has links)
No description available.
5

Comparison of Regular Ringer's Solution and Glucose Ringer's Solution on the Longevity of the Hirudo medicinalis' Retzius Cell

Peretti, Nicole Arielle 01 March 2015 (has links) (PDF)
In 1882, Sydney Ringer, a professor of medicine at University College in London, experimented with the frog ventricle to better understand how each constituent of blood influences contraction. The ultimate goal was to create an artificial circulating fluid to use for the perfusion of isolated organs, in this case, a frog heart. Today, Ringer’s solution is still used in research for physiological studies requiring the survival and maintenance of specimens outside of their host bodies. One such example is the use of medicinal leech ganglia for electrophysiological measurements. In this thesis, I am comparing two Ringer’s solutions, original versus added glucose, and their impact on the longevity of the ganglia. By stimulating cells in the dissected ganglia submerged in Ringer’s solution with a micropipette, action potential responses can be recorded and used to compare longevity of the cells in each solution. By providing the dissected ganglia with an additional source of fuel, I hypothesized that cells in the glucose-enriched Ringer’s solution would live longer, and thus provide action potentials longer, than cells in regular Ringer’s solution with a minimum increase in longevity of thirty minutes. Data analysis showed that glucose Ringer’s solution did not keep the cells alive longer than regular Ringer’s solution when the difference of means was set to 30 minutes. However, data did show a significant difference in the average longevity of the Retzius cell in glucose Ringer’s solution versus regular Ringer’s solution when the difference of means was set to zero.
6

Mecanismes cel·lulars en la curació de ferides a Hirudo medicinalis

Huguet i Blanco, Gemma 06 June 1994 (has links)
S'estudia la histologia normal de la paret corporal d'Hirudo medicinalis i els canvis morfogenètics que es donen durant el procés de cicatrització de ferides per incisió, cauterització i nitrat de plata.El procés de curació de ferides a Hirudo medicinalis consta d'una fase de formació d'un tap cel·lular, el pseudoblastema, d'un procés de reepitelització i de la formació d'un teixit cicatricial, com en els altres hirudinis estudiats (Myers, 1935; LeGore i Sparks, 1971; Cornec, 1984). Hem observat també el fenomen de la contracció de la ferida que permet l'acostament dels marges de la ferida.Formació i evolució del pseudoblastemaEl pseudoblastema, a diferència d'altres espècies estudiades, està format per un sol tipus cel·lular: les cèl·lules vasocentrals, provinents del teixit vasofibrós, una especialització del teixit connectiu. Aquestes cèl·lules estan capacitades per realitzar les diferents funcions que en espècies rincobdèl·lides realitzen diferents tipus cel·lulars. En concret: taponament de la ferida a través de la formació del pseudoblastema, fagocitosi dels teixits necrosats i regeneració, almenys d'una part, de la matriu connectiva cicatricial. També són responsables de la contracció de la ferida.Les cèl·lules vasocentrals en el seu estadi de repòs es troben en el teixit vasofibrós formant agrupacions coherents, però sense mostrar unions intercel·lulars especialitzades visibles en ME. La coherència del grup queda assegurada per les interdigitacions entre les cèl·lules vasocentrals i probablement per unions tipus adherens o especialitzades. Les unions amb la matriu són de tipus adherens. Aquestes cèl·lules vasocentrals presenten feixos de filaments d'actina força conspicus.En produir-se una ferida les cèl·lules vasocentrals s'activen, desconnecten les unions intercel·lulars i amb la matriu i migren cap a la zona afectada, on s'acumulen. El pseudoblastema actua com un tap cel·lular que funciona de forma eficient per tancar la ferida en un plaç de temps relativament curt. El pseudoblastema forma un teixit coherent amb unions intercel·lulars tipus adherens, caracteritzades per material electrodens en la cara intracitoplasmàtica, feixos de filaments d'actina que hi convergeixen i espais intercel·lulars petits, de 17-20 mm, atravessats per petites fibril·les.Un cop finalitzat el procés de reepitelització, es produeix una contracció de la ferida. Es produeix per la retracció del pseudoblastema cap a l'interior de l'animal. El pseudoblastema disminueix la seva amplària i arrossega els teixits contigus provocant un tancament. La força motriu que provoca la retracció i l'arrossegament dels teixits vindria donada per la presència dels filaments d'actina a les cèl·lules del pseudoblastema, els quals durant aquesta fase es tornen mes conspicus. La presència d'unions intercel·lulars especialitzades característiques de la fase de contracció, està relacionada amb la transmissió de la força de tensió. Aquestes unions connecten els feixos de filaments d'actina de les cèl·lules amb la matriu o d'una cèl·lula a altre a través d'espais intercel·lulars força amples en els que s'observa material electrodens.ReepitelitzacióL'epitelització s'inicia quan el pseudoblastema està consolidat i segueix el mateix patró que la reepitelització de ferides en epitelis monoestratificats de vertebrats (Stem i DePalma, 1983, és a dir, per migració de tota la capa per sobre del substrat, segons l'anomenat model de lliscament.Les glàndules unicel·lulars mucoses del tegument degeneren abans de produir-se la migració epitelial i posteriorment, un cop consolidat l'epiteli a sobre de la ferida, es diferencien a partir de les cèl·lules epitelials.Durant l'epitelització es produeixen canvis importants en el citosquelet i les unions basals de les cèl·lules epitelials. En canvi, el complex d'unió lateral es manté durant tot el procés. En iniciar-se la migració els tonofilaments es desconnecten dels hemidesmosomes cuticulars i dèrmics i es reagrupen al voltant del nucli, a la vegada que els hemidesmosomes dèrmics es desconnecten de la làmina basal. Un cop acabada la migració, les cèl·lules epitelials estableixen unions basals amb les cèl·lules del pseudoblastema. Aquestes unions no són hemidesmosomes sinó que presenten el mateix aspecte que les unions intercel·lulars del pseudoblastema. Els hemidesmosomes no es tornen a formar fins que les cèl·lules epitelials han restablert la membrana basal.La regeneració de la membrana basal no s'inicia fins que no s'ha començat a regenerar matriu connectiva a la zona cicatricial.Regeneració de la cicatriuAl mateix temps que es dona el fenomen de contracció, s'observa regeneració de la matriu connectiva entre les cèl·lules del pseudoblastema. Aquestes cèl·lules són responsables almenys del recobriment fibrós que presenten en aquest estadi, durant el qual mostren sàculs del reticle endoplasmàtic rugós molt dilatats, característics de cèl·lules que secreten constituents de la matriu. A més, s'observa infiltració de matriu connectiva i processos citoplasmàtics dels fibròcits en els marges del pseudoblastema.En la matriu del teixit connectiu normal s'observen fibres que estan constituïdes per un còrtex de fibril·les col·làgenes organitzades al voltant dels processos citoplasmàtics dels fibròcits. Les fibres del teixit connectiu peridigestiu, d'uns 1,2-1,9 mm de diàmetre, presenten el còrtex prim, amb les fibril·les organitzades paral·lelament a l'eix de la fibra. En canvi, les fibres de la dermis i teixit connectiu intramuscular, d'uns 2,5-7,1 mm de diàmetre, tenen el còrtex gruixut, amb fibril·les que s'organitzen paral·lelament en la zona proximal a la medul·la i de forma desorganitzada en la part més distal.Als 8 mesos la cicatriu encara és detectable. La matriu cicatricial presenta fibres connectives del tipus prim i força material fibril·lar desorganitzat disposat laxament. S'observa colonització per part de fibròcits, cromatòfors, petites fibres musculars i nervis. / This thesis in a study of the morphogenetic events that occurs during wound healing of Hirudo medicinalis and of the normal histology of the body wall.The wound healing process of Hirudo medicinalis involves the formation of a cellular plug, the reepithelialization and the regeneration of a scar tissue, as in the others hirudineans previously studied (Myers, 1935; LeGore and Sparks, 1971; Cornec 1964). We also report the wound contraction process that allows the wound clousure.After a wound is inflicted cells of the connective tissue migrate to form a cellular plug, the pseudoblastema. The pseudoblastema of Hirudo medicinalis formed only by one type of cell: the vasocentral cells. In the resting state those cells are associated with vasofibrous cells forming the vasofibrous tissue.Once the pseudoblastema has been formed, then reepithelialization begins. The epithelium of the wound edges advances as a unified sheet like the monolayered epithelia of Vertebrata (Stenn and DePalma, 1988). Unicellular mucous glands of the integument degenerate until epithelial migration. Later, once the epithelium has been consolidated over the wound, some epithelial cells differentiate into mucous glands.After the wound has been reepithelializated, wound contraction occurs by the retraction of the pseudoblastema.In the later stages, infiltration of fibrocite citoplasmic projections can be observed. The pseudoblastema disintegrates and an extracellular matrix remains in its place. This matrix is colonized by fibrocites, capillary vessels, nerves and little muscular fibers. The body wall muscular fibers sectioned or splitted don't regenerate. The extracellular matrix of the scar zone can be distinguished from the normal one for long periods (8 months at least).An important fact of the work is the role of the vasocentral cells. Those cells are responsible for the formation of the pseudoblastema and for the phagocitosis of the remnants of injures tissue. They are also responsible for the wound contraction, presenting acting filaments alinied with the stress direction and specialized intercellular junctions that transmit tension force. Finally, they contribute to the scar matrix regeneration by the synthesis of a fibrous cell coat.
7

Action Potential Simulation of the Hirudo Medicinalis's Retzius Cell in MATLAB

Tempesta, Zechari Ryan 01 December 2013 (has links)
Modification of Hodgkin and Huxley’s experimentally derived set of nonlinear differential equations was implemented to accurately simulate the action potential of the Hirudo Medicinalis’s Retzius cell in MATLAB under analogous conditions to those found in the Retzius cell environment. The voltage-gated sodium and potassium channel responses to changes in membrane potential, as experimentally determined by Hodgkin and Huxley, were manipulated to suit simulation parameters established by electrophysiological Retzius cell recordings. Application of this methodology permitted additional accurate simulation of the Hirudo Medicinalis’s P cell under analogous conditions to those found in the P cell environment. Further refinement of this technique should allow for the voltage-gated behavioral based simulation of action potential waveforms found in variety of neurons under simulation conditions analogous to the nerve cell environment.

Page generated in 0.0643 seconds