Spelling suggestions: "subject:"hochleistungs""
1 |
Berücksichtigung von Temperaturfeldern bei Ermüdungsversuchen an UHPCDeutscher, Melchior 07 March 2023 (has links)
Die Anforderungen an Baumaterialien steigen durch immer schlankere und höhere Tragwerke. Im Massivbau geht daher seit längerem die Materialentwicklung hin zu hochfesten und ultrahochfesten Betonen. Neben der steigenden statischen Beanspruchung nimmt gleichzeitig, bedingt durch immer ausgereiztere Konstruktionen, die Bedeutung der Ermüdungsfestigkeit zu. Deswegen liegt der Fokus der Forschung im Bereich der Hochleistungsbetone aktuell vor allem auf der Widerstandsfähigkeit gegenüber zyklischen Beanspruchungen. Dabei wurde in verschiedenen Forschungsvorhaben bei höheren Prüfgeschwindigkeiten bei Druckschwellversuchen zur Erzeugung von Wöhlerlinien eine Erwärmung der Probekörper festgestellt. Diese Arbeit widmet sich dieser Thematik bezogen auf ultrahochfesten Beton.
Mit einer umfangreichen Parameterstudie konnte ein Überblick über maßgebende Einflussgrößen auf den Erwärmungsprozess gegeben werden. Als wichtigste Ursachen für die Temperaturerzeugung wurde zum einen ein inneres Reibungspotenzial festgestellt, welches mit geringer werdendem Größtkorn und durch wachsende Schädigung ansteigt. Zum anderen ist die eingetragene Energie pro Lastwechsel entscheidend. Anders als die Ermüdungsfestigkeit von Beton, die vor allem von der Oberspannung abhängig ist, ist die Erwärmung pro Lastwechsel von der Spannungsamplitude abhängig. Die Prüfgeschwindigkeit beeinflusst die messbare Erwärmung hingegen nur durch die Veränderung des Zeitraums, der pro Lastwechsel zur Temperaturabgabe zur Verfügung steht. Die Temperaturgenerierung pro Lastwechsel ist hingegen frequenzunabhängig.
Ein negativer Einfluss der Probekörpererwärmung zeigt sich vor allem bei der deutlichen Reduzierung der Bruchlastwechselzahlen im Vergleich zu Versuchen, bei denen kein deutlicher Temperaturanstieg zu verzeichnen war. Basierend auf bisherigen Arbeiten zu hochfesten Betonen schlagen deswegen verschiedene Autoren eine Anpassung des Versuchsablaufs zur Begrenzung der Temperaturentwicklung im Probekörper vor. Die vorliegende Arbeit zeigt im Gegensatz dazu eine Methode auf, bei der die Erwärmung zugunsten einer zeiteffizienten Prüfung zugelassen und anschließend bei der Auswertung berücksichtigt wird. Als eine Hauptursache für das vorzeitige Versagen bei starker Erwärmung wurde die statische Druckfestigkeit, welche temperaturabhängig
ist, ausgemacht. Steigt die Temperatur, reduziert sich gleichzeitig die Druckfestigkeit. Dies führt bei kraftgesteuerten Druckschwellversuchen mit konstantem Lastspiel zu einer Veränderung des bezogenen Spannungsspiels. Vor allem die stark steigende bezogene Oberspannung führt schlussendlich zu einem vorzeitigen Ermüdungsversagen. Da die Temperatur bei den Versuchen, die vor den rechnerischen Erwartungswerten versagen, stetig bis zum Versagenszeitpunkt ansteigt, ist der Probekörper einer sich über die Versuchsdauer veränderlichen bezogenen Beanspruchung ausgesetzt. Bei der Versuchsauswertung kann ein veränderliches Lastspiel nicht für die Einordnung in Wöhlerdiagramme verwendet werden. Weil die Verwendung der Lasteingangsgrößen zu einer Unterschätzung der Ermüdungsfestigkeit führt, muss eine Ermittlung eines äquivalenten konstanten
Spannungsspiels erfolgen, welches die Festigkeitsveränderung des Betons berücksichtigt. Anhand der durchgeführten Druckschwellversuche und der temperaturabhängigen Druckfestigkeit wurde eine analytische Methode entwickelt, mit der unter Verwendung der anfänglichen Lastamplitude sowie der gemessenen maximalen Temperatur eine angepasste Oberspannung berechnet und dann die erreichte Bruchlastwechselzahl in ein Wöhlerdiagramm eingetragen werden kann.
Diese Methode wird für den vertieft untersuchten ultrahochfesten Beton für eine Vielzahl von Lastkonfigurationen sowie zusätzlich für Versuchsergebnisse eines hochfesten Betons abschließend verifiziert.:Inhaltsverzeichnis
1 Einleitung und Aufbau 1
1.1 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Aufbau der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Stand des Wissens 5
2.1 Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Ermüdungsbeanspruchung . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Betonermüdung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Ultrahochfester Beton (UHPC) . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 UHPC unter Ermüdungsbeanspruchung . . . . . . . . . . . . . . . . . . . 14
2.2 Einfluss der Temperatur auf die statische Druckfestigkeit . . . . . . . . . . . . . . 15
2.2.1 Wissenschaftliche Untersuchungen . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Regelung nach fib Model Code 2010 (2012) . . . . . . . . . . . . . . . . . 17
2.3 Betonerwärmung bei zyklischen Versuchen – Wissensstand bis 2017 . . . . . . . . 18
2.3.1 Einflussparameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Temperaturentwicklung im Probekörper . . . . . . . . . . . . . . . . . . . 23
2.4 Zielstellung der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Betonerwärmung bei zyklischen Versuchen - Wissensstand ab 2017 . . . . . . . . 24
2.5.1 Elsmeier - Parameterstudie zur Erwärmung von hochfesten Vergussbetonen 24
2.5.2 Bode - Energetische Auswertung von Ermüdungsversuchen . . . . . . . . . 28
2.5.3 Schneider - Frequenzeinfluss auf den Ermüdungswiderstand von hochfestem
Beton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.4 Markert - Feuchte- und Wärmeeinfluss auf die Ermüdungsschädigung von
HPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Zusammenfassung und Abgrenzung . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3 Eigene Forschung 37
3.1 Grundlagen zur Versuchsdurchführung . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.1 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.2 Herstellung, Lagerungsbedingungen und Probekörpervorbereitung . . . . . 39
3.1.3 Probengeometrie und Messapplikationen . . . . . . . . . . . . . . . . . . . 39
3.1.4 Versuchsdurchführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.5 Betonchargen und Versuchsmatrix . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Auswertung von Temperaturmesswerten . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Temperaturentwicklung und -verteilung im Probekörper . . . . . . . . . . . . . . 46
3.4 Parameterstudie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 “Experimental Investigations on the Temperature Increase of Ultra-High
Performance Concrete under Fatigue Loading“ Deutscher et al. (2019) . . 49
3.4.2 “Experimental Investigations on Temperature Generation and Release
of Ultra-High Performance Concrete during Fatigue Tests“ Deutscher
et al. (2020a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.3 “Heating rate with regard to temperature release of UHPC under cyclic
compressive loading“ Deutscher et al. (2021a) . . . . . . . . . . . . . . . . 86
3.4.4 “Influence of the compressive strength of concrete on the temperature
increase due cyclic loading“ Deutscher et al. (2020b) . . . . . . . . . . . . 98
3.4.5 Ergänzungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4.6 Zusammenfassung der Parameterstudie . . . . . . . . . . . . . . . . . . . . 116
3.5 Vergleich mit dem Stand des Wissens . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.1 Spannungsspiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.2 Frequenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.3 Größtkorn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.5.4 Betonfestigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.5.5 Probenalter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.6 Berücksichtigung der Temperatur bei der Versuchsbewertung . . . . . . . . . . . 122
3.6.1 “Influence of temperature on the compressive strength of high performance
and ultra-high performance concretes“ Deutscher et al. (2021b) . . . . . . 123
3.6.2 “Consideration of the heating of high-performance concretes during cyclic
tests in the evaluation of results“ Deutscher (2021) . . . . . . . . . . . . . 134
3.6.3 Verifizierung an einem HPC . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4 Zusammenfassung und Ausblick 153
4.1 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.2 Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5 Allgemeine Ergänzungen A1
5.1 Materialkennwerte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1
5.1.1 UHPC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1
5.1.2 UHPC 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A3
5.2 Druckfestigkeit unter Temperatureinfluss . . . . . . . . . . . . . . . . . . . . . . . A4
5.2.1 Klimakammerlagerung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A4
5.2.2 Wasserlagerung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A5
5.2.3 getrocknet im Trockenofen . . . . . . . . . . . . . . . . . . . . . . . . . . . A5
5.3 zyklische Druckschwellversuche . . . . . . . . . . . . . . . . . . . . . . . . . . . . A5
5.3.1 UHPC 1 Charge I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A7
5.3.2 UHPC 2 Charge II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A11
5.3.3 UHPC 1 Charge III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A16
5.3.4 Mörtel Charge IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A20
5.3.5 NC 1 Charge V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A21
5.3.6 UHPC 1 Charge VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A22
5.3.7 UHPC 1 Charge VII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A23
5.3.8 NC 2 Charge VIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A28
5.4 Restfestigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A30
5.4.1 UHPC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A30
5.4.2 UHPC 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A31 / Due to ever slimmer and higher load-bearing structures the requirements on building materials are increasing. On the part of concrete, the development is therefore moving towards high-strength and ultra-high-strength concretes. In addition to the increasing static stress, the importance of fatigue strength is also increasing due to increasingly sophisticated constructions. Therefore, the focus in materials research is currently on resistance to cyclic stresses, especially in the area of high-performance concretes. Various reasearchers has been detected a heating of test specimens
at higher load-speed during pressure swell tests to generate Wöhler lines. For this reason, this study is focused on the heating in relation to ultra-high-strength concrete.
Using a comprehensive parameter study, an overview of the significant influencing variables on the heating process could be given. On the one hand, an internal friction potential which increases with decreasing maximum grain size and due to growing damage, could be indetified as an important causes of temperature generation. On the other hand, the applied energy per load cycle is decisive. Unlike the fatigue strength of concrete, which mainly depends on the maximum stress, the heating per load cycle is dependent on the amplitude. The load frequency only influences the measurable heating by changing the time period available per load change for
temperature release. But the heating per load cycle is independent of the load frequency.
A negative influence of the specimen heating could be observed in the significant reduction of the number of cycles to failure compared to tests in which there is no significant increase in temperature. Based on previous studies on high-strength concretes, various authors propose an adaptation of the test procedure to minimise the temperature development in the specimen. The present work proposes a method in which heating is allowed in favour of time-efficient testing and the maximum temperature is taken into account in the results. The static compressive strength,
which is temperature-dependent, could be identified as a main cause of premature failure in the case of strong heating. If the temperature increases, the compressive strength is reduced simultaneously. This leads to a change in the related stress cycle in force-controlled pressure swell tests with constant load cycle. The increasing related maximum stresslevel causes finally a premature fatigue failure. All tests that fail before the calculated expected value heat up until failure. This leads to a permanently changing stress amplitude over the duration of the test. In the evaluation, a changeable load cycle cannot be used for the classification in Wöhler
diagrams. Due to the fact that the use of the load input values leads to an underestimation of the fatigue strength, an equivalent constant stress cycle must be determined, which takes into account the strength change of the concrete. Based on the pressure swell tests carried out and the temperature-dependent compressive strength, an analytical method was developed. Using the initial load amplitude as well as the measured maximum temperature, an adjusted maximum stress level can be calculated. The achieved number of cycles to failure can be entered in a Wöhler diagram with the calculated maximum stress level. This method is finally verified for the ultra-high strength concrete investigated in further detail for a wide range of load configurations and additionally for test results of a high-strength concrete.:Inhaltsverzeichnis
1 Einleitung und Aufbau 1
1.1 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Aufbau der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Stand des Wissens 5
2.1 Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Ermüdungsbeanspruchung . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Betonermüdung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Ultrahochfester Beton (UHPC) . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 UHPC unter Ermüdungsbeanspruchung . . . . . . . . . . . . . . . . . . . 14
2.2 Einfluss der Temperatur auf die statische Druckfestigkeit . . . . . . . . . . . . . . 15
2.2.1 Wissenschaftliche Untersuchungen . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Regelung nach fib Model Code 2010 (2012) . . . . . . . . . . . . . . . . . 17
2.3 Betonerwärmung bei zyklischen Versuchen – Wissensstand bis 2017 . . . . . . . . 18
2.3.1 Einflussparameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Temperaturentwicklung im Probekörper . . . . . . . . . . . . . . . . . . . 23
2.4 Zielstellung der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Betonerwärmung bei zyklischen Versuchen - Wissensstand ab 2017 . . . . . . . . 24
2.5.1 Elsmeier - Parameterstudie zur Erwärmung von hochfesten Vergussbetonen 24
2.5.2 Bode - Energetische Auswertung von Ermüdungsversuchen . . . . . . . . . 28
2.5.3 Schneider - Frequenzeinfluss auf den Ermüdungswiderstand von hochfestem
Beton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.4 Markert - Feuchte- und Wärmeeinfluss auf die Ermüdungsschädigung von
HPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Zusammenfassung und Abgrenzung . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3 Eigene Forschung 37
3.1 Grundlagen zur Versuchsdurchführung . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.1 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.2 Herstellung, Lagerungsbedingungen und Probekörpervorbereitung . . . . . 39
3.1.3 Probengeometrie und Messapplikationen . . . . . . . . . . . . . . . . . . . 39
3.1.4 Versuchsdurchführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.5 Betonchargen und Versuchsmatrix . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Auswertung von Temperaturmesswerten . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Temperaturentwicklung und -verteilung im Probekörper . . . . . . . . . . . . . . 46
3.4 Parameterstudie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 “Experimental Investigations on the Temperature Increase of Ultra-High
Performance Concrete under Fatigue Loading“ Deutscher et al. (2019) . . 49
3.4.2 “Experimental Investigations on Temperature Generation and Release
of Ultra-High Performance Concrete during Fatigue Tests“ Deutscher
et al. (2020a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.3 “Heating rate with regard to temperature release of UHPC under cyclic
compressive loading“ Deutscher et al. (2021a) . . . . . . . . . . . . . . . . 86
3.4.4 “Influence of the compressive strength of concrete on the temperature
increase due cyclic loading“ Deutscher et al. (2020b) . . . . . . . . . . . . 98
3.4.5 Ergänzungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4.6 Zusammenfassung der Parameterstudie . . . . . . . . . . . . . . . . . . . . 116
3.5 Vergleich mit dem Stand des Wissens . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.1 Spannungsspiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.2 Frequenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.3 Größtkorn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.5.4 Betonfestigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.5.5 Probenalter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.6 Berücksichtigung der Temperatur bei der Versuchsbewertung . . . . . . . . . . . 122
3.6.1 “Influence of temperature on the compressive strength of high performance
and ultra-high performance concretes“ Deutscher et al. (2021b) . . . . . . 123
3.6.2 “Consideration of the heating of high-performance concretes during cyclic
tests in the evaluation of results“ Deutscher (2021) . . . . . . . . . . . . . 134
3.6.3 Verifizierung an einem HPC . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4 Zusammenfassung und Ausblick 153
4.1 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.2 Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5 Allgemeine Ergänzungen A1
5.1 Materialkennwerte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1
5.1.1 UHPC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1
5.1.2 UHPC 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A3
5.2 Druckfestigkeit unter Temperatureinfluss . . . . . . . . . . . . . . . . . . . . . . . A4
5.2.1 Klimakammerlagerung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A4
5.2.2 Wasserlagerung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A5
5.2.3 getrocknet im Trockenofen . . . . . . . . . . . . . . . . . . . . . . . . . . . A5
5.3 zyklische Druckschwellversuche . . . . . . . . . . . . . . . . . . . . . . . . . . . . A5
5.3.1 UHPC 1 Charge I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A7
5.3.2 UHPC 2 Charge II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A11
5.3.3 UHPC 1 Charge III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A16
5.3.4 Mörtel Charge IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A20
5.3.5 NC 1 Charge V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A21
5.3.6 UHPC 1 Charge VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A22
5.3.7 UHPC 1 Charge VII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A23
5.3.8 NC 2 Charge VIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A28
5.4 Restfestigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A30
5.4.1 UHPC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A30
5.4.2 UHPC 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A31
|
2 |
Leichte Deckentragwerke aus geschichteten HochleistungsbetonenFrenzel, Michael, Farwig, Kristina, Curbach, Manfred 21 July 2022 (has links)
Stahlbetondeckenplatten sind material- und energieintensive Biegetragwerke, wenn sie, wie derzeit üblich, ebenflächig mit konstanter Querschnittshöhe und aus einer Betonsorte hergestellt werden. Diese Ausführung ist aus statischer und bauökologischer Sicht sehr ineffizient, da der bewehrte Beton nur an wenigen Stellen sowohl in der Haupttragrichtung als auch über die Deckenhöhe voll ausgenutzt wird. Mit einer gleichmäßigen Ausnutzung können Material und Gewicht und damit natürliche Ressourcen gespart werden. / Reinforced concrete floor slabs are materialand energy-intensive flexural load-bearing structures if, as it is currently the case, they are produced flat with a constant cross-sectional height and from one type of concrete. This design is very inefficient from a structural and building ecology point of view, as the reinforced concrete is only fully utilised at a few areas both in the main load-bearing direction and across the slab height. With an uniform utilisation, material and weight and thus natural resources can be saved.
|
3 |
Beton unter mehraxialer Beanspruchung / Concrete under multiaxial loading conditions / Ein Materialgesetz für Hochleistungsbetone unter KurzzeitbelastungSpeck, Kerstin 21 July 2008 (has links) (PDF)
Diese Arbeit basiert auf der Untersuchung von hochfesten und ultrahochfesten Betonen mit und ohne Fasern unter zwei- und dreiaxialer Druckbeanspruchung. Die Auswirkung der unterschiedlichen Betonzusammensetzung ist für verschiedene Beanspruchungen nicht gleich ausgeprägt, dennoch konnten grundlegende Zusammenhänge herausgearbeitet werden. Anhand der Bruchbilder konnten die drei Versagensmechanismen Druck-, Spalt- und Schubbruch identifiziert werden, deren Charakteristik über die Kalibrierung an vier speziellen Versuchswerten direkt in das Bruchkriterium einfließen. Dieses stellt eine Erweiterung der Formulierung von OTTOSEN dar, so dass das spröde und z. T. anisotrope Verhalten von Hochleistungsbeton berücksichtigt wird. Die beobachteten Spannungs-Dehnungs-Verläufe korrelieren mit den Versagensformen. Deshalb wird ein Stoffgesetz getrennt für den Druck- und den Zugmeridian aufgestellt, dessen Parameter sich mit zunehmendem hydrostatischen Druck verändern. In die Anfangswerte fließen die Betonzusammensetzung und herstellungsbedingte Anisotropien ein. Die lastinduzierte Anisotropie infolge einer gerichteten Mikrorissbildung wird in dem vorgestellten Stoffgesetzt über richtungsabhängige Parameter ebenfalls berücksichtigt.
|
4 |
Beton unter mehraxialer Beanspruchung: Ein Materialgesetz für Hochleistungsbetone unter KurzzeitbelastungSpeck, Kerstin 31 January 2008 (has links)
Diese Arbeit basiert auf der Untersuchung von hochfesten und ultrahochfesten Betonen mit und ohne Fasern unter zwei- und dreiaxialer Druckbeanspruchung. Die Auswirkung der unterschiedlichen Betonzusammensetzung ist für verschiedene Beanspruchungen nicht gleich ausgeprägt, dennoch konnten grundlegende Zusammenhänge herausgearbeitet werden. Anhand der Bruchbilder konnten die drei Versagensmechanismen Druck-, Spalt- und Schubbruch identifiziert werden, deren Charakteristik über die Kalibrierung an vier speziellen Versuchswerten direkt in das Bruchkriterium einfließen. Dieses stellt eine Erweiterung der Formulierung von OTTOSEN dar, so dass das spröde und z. T. anisotrope Verhalten von Hochleistungsbeton berücksichtigt wird. Die beobachteten Spannungs-Dehnungs-Verläufe korrelieren mit den Versagensformen. Deshalb wird ein Stoffgesetz getrennt für den Druck- und den Zugmeridian aufgestellt, dessen Parameter sich mit zunehmendem hydrostatischen Druck verändern. In die Anfangswerte fließen die Betonzusammensetzung und herstellungsbedingte Anisotropien ein. Die lastinduzierte Anisotropie infolge einer gerichteten Mikrorissbildung wird in dem vorgestellten Stoffgesetzt über richtungsabhängige Parameter ebenfalls berücksichtigt.
|
5 |
Experimentelle Analyse des Tragverhaltens von Hochleistungsbeton unter mehraxialer Beanspruchung / Experimental Analysis of the Behaviour of High Performance Concrete Under Multiaxial States of StressHampel, Torsten 10 January 2007 (has links) (PDF)
Die vorliegende Arbeit befaßt sich mit der experimentellen Analyse des Tragverhaltens von Hochleistungsbeton unter mehraxialer Beanspruchung. Dabei wurden sowohl die zwei und die dreiaxiale Drucktragfähigkeit als auch das Verhalten unter zweiaxialer kombinierter Druck Zug Beanspruchung untersucht. Für die Analyse kamen jeweils drei Betonfestigkeitsklassen zum Einsatz, C 55/67, C 70/85 und C 90/105. Innerhalb der durchgeführten Versuchsreihen wurden sowohl die jeweiligen Bruchlasten als auch die Spannungs Dehnungs Beziehungen ermittelt. Die Ergebnisse dieser Untersuchungen wurden mit denen verglichen, die an Normalbeton gewonnen wurden. Aus diesem Vergleich wurden Schlußfolgerungen für den Einsatz von Hochleistungsbetonen abgeleitet. Zur mathematischen Beschreibung des Tragverhaltens von Hochleistungsbeton wurden für die untersuchten Beanspruchungsregime Näherungsfunktionen angegeben. / The subject of this paper is the experimental analysis of the behavior of High Performance Concrete under multiaxial loading. Thereby the behavior under bi- and triaxial compression as well as the behavior under combined compression-tension stresses were examined. Three concrete grades were examined, C 55/67, C 70/85 and C 90/105. Within the test series, the ultimate loads and the stress-strain-relationships were determined. The results of the examinations were compared to the results which are already known for normal strength concrete. From these comparisons conclusions for the usage of high performance concrete were made. For the examined states of stress mathematical approximations are specified.
|
6 |
Experimentelle Analyse des Tragverhaltens von Hochleistungsbeton unter mehraxialer BeanspruchungHampel, Torsten 20 November 2006 (has links)
Die vorliegende Arbeit befaßt sich mit der experimentellen Analyse des Tragverhaltens von Hochleistungsbeton unter mehraxialer Beanspruchung. Dabei wurden sowohl die zwei und die dreiaxiale Drucktragfähigkeit als auch das Verhalten unter zweiaxialer kombinierter Druck Zug Beanspruchung untersucht. Für die Analyse kamen jeweils drei Betonfestigkeitsklassen zum Einsatz, C 55/67, C 70/85 und C 90/105. Innerhalb der durchgeführten Versuchsreihen wurden sowohl die jeweiligen Bruchlasten als auch die Spannungs Dehnungs Beziehungen ermittelt. Die Ergebnisse dieser Untersuchungen wurden mit denen verglichen, die an Normalbeton gewonnen wurden. Aus diesem Vergleich wurden Schlußfolgerungen für den Einsatz von Hochleistungsbetonen abgeleitet. Zur mathematischen Beschreibung des Tragverhaltens von Hochleistungsbeton wurden für die untersuchten Beanspruchungsregime Näherungsfunktionen angegeben. / The subject of this paper is the experimental analysis of the behavior of High Performance Concrete under multiaxial loading. Thereby the behavior under bi- and triaxial compression as well as the behavior under combined compression-tension stresses were examined. Three concrete grades were examined, C 55/67, C 70/85 and C 90/105. Within the test series, the ultimate loads and the stress-strain-relationships were determined. The results of the examinations were compared to the results which are already known for normal strength concrete. From these comparisons conclusions for the usage of high performance concrete were made. For the examined states of stress mathematical approximations are specified.
|
Page generated in 0.0882 seconds