Spelling suggestions: "subject:"home."" "subject:"hope.""
431 |
Chaos v polích deformovaných černých děr / Chaos in deformed black-hole fieldsWitzany, Vojtěch January 2015 (has links)
The consequences of two key approximations of accretion-disc physics near black holes are studied in this thesis. First, the question of effective ``pseudo-Newtonian" potentials mimicking a black hole is investigated both through numerical simulations and analytical means, and second, the neglect of additional gravitating matter near accreted-upon black holes and its consequences are put to test. After some broader discussion of integrability, resonance and chaos, a general "pseudo-Newtonian" limit for geodesic motion is derived, and applied for the case of null geodesics near a glowing toroid and for time-like geodesics in the Kerr metric. Afterwards, a new Newtonian gravitational potential for non- singular toroids is proposed and its usefulness for the so-called Weyl space-times is discussed. Finally, a new pseudo-Newtonian potential is introduced and applied alongside already known potentials in models of free test particle motion in the field of a black hole with a disc or ring, in complete analogy with previous exact-relativistic studies, and the previous conclusion of chaos in disc/ring-hole models is confirmed. Overall, the pseudo-Newtonian framework is able to reproduce a number of key features of the original systems with notable differences arising only as a consequence of extremely strong or...
|
432 |
Femtosekundová laserová spektroskopie diamantu / Femtosecond laser spectroscopy of diamondBažíková, Sára January 2017 (has links)
Due to its extraordinary features and wide bandwidth (5.47 eV), diamond is a very promising material in the field of optoelectronics. By absorbing ultraviolet light, excited charge carriers - electrons and holes - are created in the diamond, which can create excitons due to mutual Coulomb interaction. For low temperatures and high concentrations of photoexcitated carriers, carriers can condense into electron-hole droplets and form an electron-hole liquid. The aim of this diploma thesis is to follow up with previous research at the department and to examine the dynamics of electron-hole liquid in bulk diamond at low temperatures. Using femtosecond laser spectroscopy, we investigate the influence of excitation wavelengths on the dynamics of electron-hole liquid condensation.
|
433 |
Astrofyzikální procesy v blízkosti jádra galaxie / Astrophysical processes near a galactic centreHamerský, Jaroslav January 2015 (has links)
An accretion torus is an important astrophysical phenomenon which is be- lieved to account for various features of mass inflow and release of radiation on diverse scales near stellar-mass as well as supermassive black holes. When the stationary torus is perturbed it starts to oscillate and once some part of the torus overflows the closed equipotential surface, defined by the stationary solution, this material is accreted or ejected. These oscillations reveal both spacetime properties and the intrinsic characteristics of the torus model. We study the oscillation and accretion properties of geometrically thick accretion tori using general relativistic magnetohydrodynamic simulations. Assuming axial symmetry these simulations are restricted to 2-D approximation. We discuss the impact of the presence of the large scale magnetic field and the profile of the specific angular momentum on the oscillation properties and on the accretion flow motion. 1
|
434 |
Fermi-LAT gamma-ray and multi-wavelength SED analysis and modelling of PKS 0426-380 : A thesis analysing the behaviour and properties of the blazar PKS 0426-380Löfström, Nathanael January 2022 (has links)
An analysis is made on the Flat Spectrum Radio Quasar PKS 0426-380 using two sets of data. The first set of data is the Fermi-LAT data collected over the time 54682.66 − 59317.66 in Modified Julian Date within the energy range of 100 MeV to 500 GeV. The second set of data is a multi-wavelength spectral energy distribution within the approximate frequencies of <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%0A%0A%5Cleft%5B10%5E%7B10%7D,%2010%5E%7B27%7D%20%5Cright%5D" data-classname="equation" data-title="" />. First, the Fermi-LAT data were analysed and after modelling a lightcurve over the entire available time, a period of interest was located. The next step was to obtain a multi-wavelength spectral energy distribution of said period. Then, using JetSeT modelling, the data were analysed and a model of the Synchrotron Self-Compton, External-Compton and Synchrotron curves was fitted to the data. The final model which contained the best fit provided a set of physical parameters that described the source. These parameters were finally compared to two other Flat Spectrum Radio Quasars and conclusions regarding the properties of PKS 0426-380 were eventually drawn. A discussion comparing a related work on the same source to the results in this thesis followed. With the large differences in the constrained data between the Flat Spectrum Radio Quasars as background, three predictions concluded the thesis. These are, firstly, a cautioned approach to future searches for periodicity in AGN's. Secondly, in time, local periodicity for AGN's might be more common and interesting for future research. Finally, no certain values for the physical parameters of the AGN can be assessed and the results can only be wived as indications of the actual properties. / <p>Passed</p>
|
435 |
Intensities as Tools in Grouting Evaluations - Using Data from the North Link and Stockholm City LineEliasson, Cecilia January 2012 (has links)
No description available.
|
436 |
Partially Oriented 6-star Decomposition of Some Complete Mixed GraphsKosebinu, Kazeem A. 01 August 2021 (has links)
Let $M_v$ denotes a complete mixed graph on $v$ vertices, and let $S_6^i$ denotes the partial orientation of the 6-star with twice as many arcs as edges. In this work, we state and prove the necessary and sufficient conditions for the existence of $\lambda$-fold decomposition of a complete mixed graph into $S_6^i$ for $i\in\{1,2,3,4\}$. We used the difference method for our proof in some cases. We also give some general sufficient conditions for the existence of $S_6^i$-decomposition of the complete bipartite mixed graph for $i\in\{1,2,3,4\}$. Finally, this work introduces the decomposition of a complete mixed graph with a hole into mixed stars.
|
437 |
Magnetické pole v jádru Galaxie / Magnetické pole v jádru GalaxieHamerský, Jaroslav January 2011 (has links)
In the present work we study the properties of accretion tori orbiting black hole. Our approach to this problem comes from the solving of general relativistic magnetohydrodynamic equations, which follow from conservation of the energy-momentum tensor, the particle number and from Maxwell's equations. We solve these equations by numerical methods which are described in Chapter 1. The formalism of tori which we consider here is described in Chapter 2. We are interested in tori with constant density of angular momentum and Fishbone-Moncrief tori mainly. We study accretion rates in these tori when the mass of black hole is increased suddenly and so the equilibrium in the torus is corrupted. For tori with constant density of angular momentum we study the influence of the presence of toroidal magnetic field on accretion rates.
|
438 |
Decompositions of Various Complete Graphs Into Isomorphic Copies of the 4-Cycle With a Pendant EdgeCoker, Brandon, Coker, Gary D., Gardner, Robert 02 April 2012 (has links) (PDF)
Necessary and sufficient conditions are given for the existence of isomorphic decompositions of the complete bipartite graph, the complete graph with a hole, and the λ-fold complete graph into copies of a 4-cycle with a pendant edge.
|
439 |
Optical Parametric Amplification: from Nonlinear Interferometry to Black HolesFlorez Gutierrez, Jefferson 29 March 2022 (has links)
We explore the optical parametric amplifier, an optical device where a pump field creates a pair of lower-frequency fields: signal and idler. The pump field is usually treated classically, but this thesis focuses on scenarios where the pump must be treated quantum mechanically. One of these scenarios is the growing field of nonlinear interferometry, where the fundamental sensitivity of a probed relative phase can beat the classical bounds and reach the maximum limit allowed by quantum mechanics, the Heisenberg limit. Indeed, we show that a fully quantum nonlinear interferometer displays a Heisenberg scaling in terms of the mean number of input pump photons. This result goes beyond the well-accepted Heisenberg scaling with respect to the down-converted photons inside the interferometer, which predicts unphysical phase sensitivities starting at a particular input pump energy. Our theoretical findings are particularly useful when designing a nonlinear interferometer with bright pump fields or optimized optical parametric amplifiers for quantum metrology and quantum imaging applications. The quantum nature of the pump field may also play a central role concerning other physical phenomena, like Hawking radiation in the context of black holes. As suggested by several authors, both the optical parametric amplifier and Hawking radiation comprise the creation of fundamental particle pairs. Thus, if the optical parametric amplifier is fully treated quantum mechanically, we may get insight into an open problem in modern physics, namely the black hole information paradox. According to this paradox, the information stored in a black hole can be destroyed once the black hole has evaporated by emitting Hawking radiation, contradicting quantum mechanics. Despite the experimental efforts to build systems that reproduce event horizons and gravitational effects in the laboratory, the evaporation of black holes due to the emission of Hawking radiation remains a challenging task. In this thesis, we experimentally investigate the impact of an evolving pump field in an optical parametric amplifier by optimizing a parametric down-conversion process. We measure the pump and signal photon number properties, finding that the pump field gets chaotic and the signal coherent when the pump displays some sizeable depletion. We arrive at similar conclusions about the pump field from its measured Wigner function. Our experiment is the first step towards a successful experiment that could suggest that information in the black hole is not destroyed but encoded in the emitted Hawking radiation starting at some point in the black hole evolution. We finally discuss further experimental improvements to investigate the parallel between the optical parametric amplifier and Hawking radiation.
|
440 |
Characterizing cobalamin cycling by Antarctic marine microbes across multiple scalesRao, Deepa,Ph.D.Massachusetts Institute of Technology. January 2020 (has links)
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), May, 2020 / Cataloged from the official PDF of thesis. / Includes bibliographical references (pages 161-183). / Highly productive marine microbial communities in the coastal Southern Ocean sustain the broader Antarctic ecosystem and play a key role in Earth's climate via the biological pump. Regional phytoplankton growth is primarily limited by iron and co-limited by cobalamin (vitamin B₁₂), a trace cobalt-containing organometallic compound only synthesized by some bacteria and archaea. These micronutrients impact primary production and the microbial ecology of the two keystone phytoplankton types: diatoms and Phaeocystis antarctica. This thesis investigates microbe-driven cobalamin cycling in Antarctic seas across multiple spatiotemporal scales. I conducted laboratory culture experiments with complementary proteomics and transcriptomics to investigate the B₁₂-ecophysiology of P. antarctica strain CCMP 1871 morphotypes under iron-B₁₂ co-limitation. / We observed colony formation under higher iron treatments, and a facultative use of B₁₂-dependent (MetH) and B₁₂-independent (MetE) methionine synthase isoforms in response to vitamin availability, demonstrating that this strain is not B₁₂-auxotrophic. Through comparative 'omics, we identified a putative MetE protein in P. antarctica abundant under low B₁₂, which is also found in other marine microbes. Across Antarctic seas, community-scale cobalt and B₁₂ uptake rates were measured by ⁵⁷Co radiotracer incubation experiments and integrated with hydrographic and phytoplankton pigment data. I observed significant correlations between uptake fluxes and environmental variables, providing evidence for predominantly diatom-driven uptake of these micronutrients in warmer, fresher surface waters with notable regional differences. / To date, this work is the most comprehensive attempt to elucidate the processes governing the co-cycling of cobalt and B₁₂ in any marine system. At the ecosystem-scale, I developed and tested a hypothesis of micronutrient-driven community dynamics through a trait-based model with cross-feeding interactions. The model demonstrates how the observed seasonal succession of springtime P. antarctica from solitary to colonial cells, bacterioplankton, and summertime diatoms may be explained by the microbial cycling of iron, dissolved organic carbon, and B₁₂. Overall, this dissertation provides new information about the micronutrient-driven ecology of Antarctic marine microbes and adds to our understanding of the interconnections between organismal life cycle, trace metals, and trace organics in marine environments. / by Deepa Rao. / Ph. D. / Ph.D. Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution)
|
Page generated in 0.1174 seconds