• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 904
  • 78
  • 51
  • 38
  • 37
  • 16
  • 8
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 1251
  • 566
  • 566
  • 566
  • 550
  • 549
  • 439
  • 385
  • 360
  • 338
  • 321
  • 316
  • 315
  • 308
  • 297
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Integration of Active Control and Passive Compliance for Peg-and-hole Assembly

Yuerong Li (9760886) 14 December 2020 (has links)
This thesis provides a brief intro to the peg-and-hole problem and goes through two active and passive compliance strategies as well as the cases that the compliance center position is not ideal. A specific scenario of peg being gripped at an error angle due to large vision uncertainties is raised and studied. Such setup can lead to an off compliance center position relative to the peg and can happen in real life but has not been solved by previous approaches. A potential solution to it by combining active control and passive compliance is provided and analyzed. By using the force and torque feedback and the robot joint angle information, the compliance center for the above scenario could be estimated without vision feedback to by-pass the potential accuracy limitation of vision sensors. And a position control with reference determined in real-time by these sensors would be able to cancel out the majority of the effect caused by an off compliance center. Additional recommendations to future work on integration of active and passive compliance strategies and utilization of arbitrary compliance center positions are provided as well.
72

Coyote-Food Base Relationships in Jackson Hole, Wyoming

Weaver, John L. 01 May 1977 (has links)
I measured three variables of coyote-food base relationships in Jackson Hole, Wyoming, during t he period Jul y, 1973, to July, 1975. Field work provided estimates of relative coyote and prey abundance as well as observations on coyote feeding behavior during winter. Laboratory analysis of 1,500 coyote scats reveal ed feeding patterns while feeding trials with captive coyotes allowed refinement in interpretation of scat analysis. Deer mice and chipmunks comprised most of the rodent biomass captured in traps in the fall, while ground squirrels accounted for much of the rodent biomass in the spring. Field voles declined from 1973 to 1974 throughout much of the study area. Northern pocket gophers, field voles, and Uinta ground squirrels were the principal foods in the May-October diet of coyotes. They fed primarily upon ungulate carrion during winter. Because substantial differences in weight between adult and juvenile ground squirrels and pocket gophers make age classification important in calculating biomass, I developed a technique for identifying age classes based upon measurements of tooth remains in coyote scats. Feeding trials with captive coyotes indicated that heavier prey are detected in scats more often than lighter ones. Differences in weight multiplied by differences in detectability for the three principal rodents varied by factors of 1.1 to 2.6. Carrion from hunter-killed and winter-killed elk supplied food for coyotes from October to May. The abundance and temporal availability of carrion varied substantially between areas. Up to six-fold differences in coyote population indices occurred between areas. These differences were attributed primarily to differences in the amount of ungulate carrion available during winter. The possible influence of nutrition upon coyote natality, mortality, and movements are contemplated.
73

Biogeochemical applications of compound-specific radiocarbon analysis

Pearson, Ann, 1971- January 2000 (has links)
Thesis (Ph.D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric and Planetary Sciences; and the Woods Hole Oceanographic Institution), February 2000. / Includes bibliographical references. / Compound-specific carbon isotopic (613C and A14C) data are reported for lipid biomarkers isolated from Santa Monica Basin (SMB) and Santa Barbara Basin (SBB) surface sediments. These organic compounds represent phytoplanktonic, zooplanktonic, bacterial, archaeal, terrestrial, and fossil carbon sources. The lipids include long-chain n-alkanes, fatty acids (as FAMEs), n-alcohols, C30 mid-chain ketols and diols, sterols, hopanols, and ether-linked C40-biphytanes of Archaea. The data show that the carbon source for most of the biomarkers is marine euphotic zone primary production or subsequent heterotrophic consumption of this biomass. Two lipid classes represent exceptions to this finding. A14C values for the n-alkanes are consistent with mixed fossil and contemporary terrestrial plant sources. The archaeal isoprenoid data reflect chemoautotrophic growth below the euphotic zone. The biomarker class most clearly representing marine phytoplanktonic production is the sterols. It is suggested, therefore, that the sterols could serve as paleoceanographic tracers for surface-water DIC. The isotopic data are used to construct two algebraic models. The first calculates the contributions of fossil and modern vascular plant carbon to SMB n-alkanes. This model indicates that the A14C of the modern component is +235%o (post-bomb) or 0%o (pre-bomb). The second model uses these values to determine the origin of sedimentary TOC. The results are comparable to estimates based on other approaches and suggest that -60% of SMB TOC is of marine origin, modern terrestrial and fossil sources contribute -10% each, and the remaining -20% is of unknown origin. / by Ann Pearson. / Ph.D.
74

Estimation of sea surface wave spectra using acoustic tomography

Miller, James Henry, 1957- January 1987 (has links)
Thesis (Sc. D.)--Joint Program in Oceanographic Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering; and the Woods Hole Oceanographic Institution), 1987. / Bibliography: p. 164-171. / Vita. / by James Henry Miller. / Sc.D.
75

Effects of Flange Holes on Flexural Behavior of Steel Beams

Arasaratnam, P. (Lathan) 11 1900 (has links)
When fastener holes are made in structural beams, the Canadian Steel Design Code CAN/CSA-S16.01 -Clause 14.1 (CSA, 2003) states that no deduction in flexural strength is needed for holes up to 15% of the gross flange area. This clause was established many years ago, however, over the years the mechanical characteristics of structural steel have changed. This research study focused on the effects of flange holes on the flexural behavior of steel I-beams made of ASTM A992 steel. This study was conducted primarily based on an experimental investigation involving 25 beam specimens. Holes of various diameters, ranging from 0% to 48% of the gross flange area were laid by drilling holes (a) in the midspan of the tension flange and (b) in the midspan of both the tension and compression flanges. Additionally, beams having holes with fasteners (snug tight) were performed. Based on the test results, this study recommended a design approach, which is analogous to an axial tension member provision as per the current CAN/CSA-S16.01 (CSA, 2003) standard. Accordingly, the effects of holes on the flexural strength can be ignored if the gross-section plastic moment is greater than a modified net-section fracture moment hence, beam members shall be designed to carry the gross-section plastic moment. Otherwise, the beam members shall be designed to carry the modified net-section fracture moment. The comparison of the recommended procedure with the 15% exemption rule as per current steel standard S16.01 (CSA, 2003) demonstrated that the current code provision is unnecessarily conservative for steel grades such as A992 steel. On the other hand, the current provision may be more conservative for high strength steels such as HSLA 80 steel, ASTM A913 Grade 60 and HPS-485W having a minimum yield-to-ultimate strength ration value of more than 0.85. The analytical portion of the research study involved the application of nonlinear finite element method to verify and comprehend the experimental results. The analytical study was conducted using ADINA FE program. The test beams were modeled using 4-node shell element that includes both geometric and material nonlinearities. The material model utilized in the FE analysis was developed based on the experimental-numerical simulation of standard tensile coupons. / Thesis / Doctor of Philosophy (PhD)
76

Effects of Elastic Anisotropy on Residual Stress Measurements Performed Using the Hole-Drilling Technique

Ward, Joshua T. 26 May 2023 (has links)
No description available.
77

Evolution of self-interacting axion around rotating black holes / 回転するブラックホール周りの自己相互作用するアクシオンの進化

Omiya, Hidetoshi 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24404号 / 理博第4903号 / 新制||理||1700(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 田中 貴浩, 准教授 久徳 浩太郎, 教授 橋本 幸士 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
78

Residual Stress Measurements of Unblasted and Sandblasted Mild Steel Specimens Using X-Ray Diffraction, Strain-Gage Hole Drilling, and Electronic Speckle Pattern Interferometry (ESPI) Hole Drilling Methods

Lestari, Saskia 21 May 2004 (has links)
The objectives of this research are to measure residual stress in both unblasted and sandblasted mild steel specimens by using three different techniques: X-ray diffraction (XRD), strain-gage hole drilling (SGHD), and electronic speckle pattern interferometry (ESPI) hole drilling, and to validate the new ESPI hole drilling method by comparing its measurement results to those produced by the SGHD method. Both the XRD and SGHD methods were selected because they are accurate and well-verified approaches for residual stress measurements. The ESPI hole drilling technique is a new technology developed based on the SGHD technique, without the use of strain gage. This technique is incorporated into a new product referred to as the PRISM system, manufactured by Hytec, Incorporated, in Los Alamos, New Mexico. Each method samples a different volume of material at different depths into the surface. XRD method is especially different compared to the other two methods, since XRD only measures stresses at a depth very close to the surface (virtually zero depth). For this reason, no direct comparisons can be made between XRD and SGHD, as well as between XRD and ESPI hole drilling. Therefore, direct comparisons can only be made between SGHD and ESPI hole drilling methods.
79

Bose-Einstein Condensation of Magnetic Excitons in Semiconductor Quantum Wells

Boţan, Vitalie January 2006 (has links)
<p>In this thesis regimes of quantum degeneracy of electrons and holes in semiconductor quantum wells in a strong magnetic field are studied theoretically. The coherent pairing of electrons and holes results in the formation of Bose-Einstein condensate of magnetic excitons in a single-particle state with wave vector <b>K</b>. We show that correlation effects due to coherent excitations drastically change the properties of excitonic gas, making possible the formation of a novel metastable state of dielectric liquid phase with positive compressibility consisting of condensed magnetoexcitons with finite momentum. On the other hand, virtual transitions to excited Landau levels cause a repulsive interaction between excitons with zero momentum, and the ground state of the system in this case is a Bose condensed gas of weakly repulsive excitons. We introduce explicitly the damping rate of the exciton level and show that three different phases can be realized in a single quantum well depending on the exciton density: excitonic dielectric liquid surrounded by weakly interacting gas of condensed excitons versus metallic electron-hole liquid. In the double quantum well system the phase transition from the excitonic dielectric liquid phase to the crystalline state of electrons and holes is predicted with the increase of the interwell separation and damping rate.</p><p>We used a framework of Green's function to investigate the collective elementary excitations of the system in the presence of Bose-Einstein condensate, introducing "anomalous" two-particle Green's functions and symmetry breaking terms into the Hamiltonian. The analytical solution of secular equation was obtained in the Hartree-Fock approximation and energy spectra were calculated. The Coulomb interactions in the system results in a multiple-branch structure of the collective excitations energy spectrum. Systematic classification of the branches is proposed, and the condition of the stability of the condensed excitonic phase is discussed.</p>
80

Bose-Einstein Condensation of Magnetic Excitons in Semiconductor Quantum Wells

Boţan, Vitalie January 2006 (has links)
In this thesis regimes of quantum degeneracy of electrons and holes in semiconductor quantum wells in a strong magnetic field are studied theoretically. The coherent pairing of electrons and holes results in the formation of Bose-Einstein condensate of magnetic excitons in a single-particle state with wave vector <b>K</b>. We show that correlation effects due to coherent excitations drastically change the properties of excitonic gas, making possible the formation of a novel metastable state of dielectric liquid phase with positive compressibility consisting of condensed magnetoexcitons with finite momentum. On the other hand, virtual transitions to excited Landau levels cause a repulsive interaction between excitons with zero momentum, and the ground state of the system in this case is a Bose condensed gas of weakly repulsive excitons. We introduce explicitly the damping rate of the exciton level and show that three different phases can be realized in a single quantum well depending on the exciton density: excitonic dielectric liquid surrounded by weakly interacting gas of condensed excitons versus metallic electron-hole liquid. In the double quantum well system the phase transition from the excitonic dielectric liquid phase to the crystalline state of electrons and holes is predicted with the increase of the interwell separation and damping rate. We used a framework of Green's function to investigate the collective elementary excitations of the system in the presence of Bose-Einstein condensate, introducing "anomalous" two-particle Green's functions and symmetry breaking terms into the Hamiltonian. The analytical solution of secular equation was obtained in the Hartree-Fock approximation and energy spectra were calculated. The Coulomb interactions in the system results in a multiple-branch structure of the collective excitations energy spectrum. Systematic classification of the branches is proposed, and the condition of the stability of the condensed excitonic phase is discussed.

Page generated in 0.0716 seconds