Spelling suggestions: "subject:"hollow carbon nanoplatelets""
1 |
Synthesis of anisotropic plate-like nanostructures using gibbsite nanoplates as the templateCao, Jie 21 April 2017 (has links)
In der vorgelegten Arbeit werden sowohl effiziente als auch einfache Modifikationsansätze zur funktionalen Polymerumhüllung von Gibbsit-Plättchen präsentiert. Die plättchen-förmige Morphologie bleibt dabei nach der Polymerumhüllung erhalten. Im ersten Teil wird ein einfacher Ansatz zur Synthese von anisotropen, plättchen-förmigen Gibbsit-Polydopamin (G-PDA) Partikeln vorgestellt. Au NPs von kontrollierbarer Größe wurden auf der G-PDA Partikeloberfläche gebildet. Diese zeigten katalytische Aktivität zur Reduktion von 4-Nitrophenol und Rhodamin B (RhB) mittels Borhydrid. Die Partikel können durch ihre große, plättchen-förmige Kontaktfläche und der stark adhäsiven Eigenschaften der PDA Hülle einfach mittels Spin-Coating auf Siliziumsubstrate aufgebracht werden. Der so präparierte Nanokatalysator kann nun einfach wiederaufbereitet werden und zeigt hervorragende Wiederverwendbarkeit. Im zweiten Teil wurden anisotrope, hybride Kern-Schale Mikrogele mit wohldefinierter Struktur synthetisiert. Dabei bilden die Gibbsit Nanoplättchen den Kern und vernetztes, thermosensitives Poly(N-isopropylacylamid) die Hülle. Depolarisierte dynamische Lichtstreuung zeigte, dass die hybriden Mikrogele im kollabierten Zustand durch die plättchen-förmigen Kerne eine anisotrope Form annehmen. Der dritte Teil der Arbeit befasst sich mit der Herstellung von hochdispergierbaren, mesoporösen und stickstoffhaltighohle Kohlenstoff-Nanoplättchen. Diese neuartige Kohlenstoff-Nanostruktur wurde mittels sogenannter Silika-Nanocasting Technik unter Veswendung von hexagonalen Gibbsit-Templat und Dopamin als Kohlenstoffquelle synthetisiert. Solche hohlen Kohlenstoff-Nanostrukturen weisen exzellente, kolloidale Stabilität in wässrigen Medien vor und können direkt als Elektrodenmaterial für Superkondensatoren verwendet werden. Außerdem können sie in polyionischen Flüssigkeiten hohe Kapazitäten erzielen, wobei gleichzeitig eine hervorragende elektrochemische Stabilität gewährleistet wird. / In the present thesis, efficient and simple modification approaches have been developed to coat gibbsite platelets with a controllable thickness of functional polymer shell, which preserves the plate-like morphology after the polymer coating. In the first part, a facile approach has been presented for the synthesis of anisotropic plate-like gibbsite-polydopamine (G-PDA) particles. Au NPs with tunable size have been formed on the G-PDA particle surface, which show efficient catalytic activity for the reduction of 4-nitrophenol and Rodamine B (RhB) in the presence of borohydride. Such nanocatalysts can be easily deposited on silicon substrate by spin coating due to the large contact area of the plate-like G-PDA particles and the strong adhesive behavior of the PDA layer. The substrate-deposited nanocatalyst can be easily recycled, which shows excellent reusability. Secondly, anisotropic hybrid core-shell microgels with well-defined structures have been synthesized using gibbsite nanoplate as core and crosslinked thermosensitive poly(N-isopropylacrylamide) as shell. The analysis by depolarized dynamic light scattering shows that the hybrid microgels have an anisotropic shape in the collapsed state, caused by the anisotropy of the plate-like core. In the third part, highly dispersible mesoporous nitrogen-doped hollow carbon nanoplates have been synthesized as a new carbon nanostructure via silica nanocasting technique using dopamine as carbon precursor and hexagonal-shaped gibbsite as template. Such hollow carbon nanoplates show excellent colloidal stability in aqueous media and can be directly applied as electrode materials in supercapacitors, which offer high capacitance and excellent electrochemical stability when using poly(ionic liquid) nanoparticles as binder.
|
Page generated in 0.0749 seconds