1 |
Knots Not for NaughtRoberts, Sharleen Adrienne 14 July 2006 (has links) (PDF)
The goal of this paper is to find the Homfly polynomial for each knot in a specific family of knots. This family of knots is generated from placing the Whitehead link into a solid torus, slicing the torus at a spot where the Whitehead has no crossings and then twisting the torus 360 degrees in either direction an integral number of times. Let L(n) denote the knot obtained by twisting the torus 360 degrees, n times. Note that n is an integer. Let the twists be towards the center of the torus for positive n and away from the center for negative n. Through the obtained Homfly polynomials, it will be determined that each of the knots in this family are distinct and non-trivial (excepting the Whitehead link).
|
2 |
Sur l'homologie de Khovanov-Rozansky des graphes et des entrelacs.Wagner, Emmanuel 10 December 2007 (has links) (PDF)
Cette thèse est consacrée à la catégorification d'invariants polynomiaux d'entrelacs et de graphes. Pour tout entier strictement positif n, Khovanov et Rozansky ont introduit en 2004 une homologie bigraduée d'entrelacs, ainsi qu'une homologie de graphes planaires. Etant donné n, leur homologie d'entrelacs catégorifie la n-ième spécialisation du polynôme d'entrelacs HOMFLYPT et leur homologie de graphes planaires catégorifie un polynôme de graphes associé. <br /><br />Dans cette thèse, on étudie ces homologies et on généralise leur construction en introduisant une graduation supplémentaire. Tout d'abord, on généralise une formule de Jaeger pour les polynômes d'entrelacs aux polynômes de graphes planaires, ainsi qu'à l'homologie de graphes planaires; on étend ensuite l'homologie d'entrelacs de Khovanov-Rozansky aux graphes plongés. Puis on construit une homologie trigraduée d'entrelacs. Cette homologie recouvre l'homologie bigraduée d'entrelacs de Khovanov et Rozansky. Enfin, on donne des exemples, des applications et des généralisations de l'homologie trigraduée d'entrelacs. On développe des outils d'algèbre homologique qui permettent de calculer explicitement l'homologie trigraduée d'entrelacs pour des exemples et on considère des déformations de l'homologie trigraduée d'entrelacs.
|
Page generated in 0.0263 seconds