1 |
Calcul des singularités dans les méthodes d’équations intégrales variationnelles / Calculation of singularities in variational integral equations methodsSalles, Nicolas 18 September 2013 (has links)
La mise en œuvre de la méthode des éléments finis de frontière nécessite l'évaluation d'intégrales comportant un intégrand singulier. Un calcul fiable et précis de ces intégrales peut dans certains cas se révéler à la fois crucial et difficile. La méthode que nous proposons consiste en une réduction récursive de la dimension du domaine d'intégration et aboutit à une représentation de l'intégrale sous la forme d'une combinaison linéaire d'intégrales mono-dimensionnelles dont l'intégrand est régulier et qui peuvent s'évaluer numériquement mais aussi explicitement. L'équation de Helmholtz 3-D sert d'équation modèle mais ces résultats peuvent être utilisés pour les équations de Laplace et de Maxwell 3-D. L'intégrand est décomposé en une partie homogène et une partie régulière ; cette dernière peut être traitée par les méthodes usuelles d'intégration numérique. Pour la discrétisation du domaine, des triangles plans sont utilisés ; par conséquent, nous évaluons des intégrales sur le produit de deux triangles. La technique que nous avons développée nécessite de distinguer entre diverses configurations géométriques ; c'est pourquoi nous traitons séparément le cas de triangles coplanaires, dans des plans sécants ou parallèles. Divers prolongements significatifs de la méthode sont présentés : son extension à l'électromagnétisme, l'évaluation de l'intégrale du noyau de Green complet pour les coefficients d'auto-influence, et le calcul de la partie finie d'intégrales hypersingulières. / The implementation of the boundary element method requires the evaluation of integrals with a singular integrand. A reliable and accurate calculation of these integrals can in some cases be crucial and difficult. The proposed method is a recursive reduction of the dimension of the integration domain and leads to a representation of the integral as a linear combination of one-dimensional integrals whose integrand is regular and that can be evaluated numerically and even explicitly. The 3-D Helmholtz equation is used as a model equation, but these results can be used for the Laplace and the Maxwell equations in 3-D. The integrand is decomposed into a homogeneous part and a regular part, the latter can be treated by conventional numerical integration methods. For the discretization of the domain we use planar triangles, so we evaluate integrals over the product of two triangles. The technique we have developped requires to distinguish between several geometric configurations, that's why we treat separately the case of triangles in the same plane, in secant planes and in parallel planes.
|
2 |
The method of exact algebraic restrictions / O método das restrições algebraicas exatasRodríguez, Lito Edinson Bocanegra 27 April 2018 (has links)
The aim of this work is to generalize the results given by Domitrz, Janeczko and Zhitomirskii in [10]. In this article they classify in the symplectic manifold (R2, w) where w = dx1 Λ dx2 + · · · + dx2n-1 Λ dx2n is the symplectic form given by Darbouxs Theorem, all the set which are symplectomorphic to a fixed quasi homogeneous curve . To do this classification they defined the algebraic restrictions. We develop a new method called the method of exact algebraic restrictions and show that this classification is solved for the non quasi homogeneous case N = {(x1, x2) = x≥3 = 0} in the symplectic manifold (C2, w ), where f(x1, x2) = x41 + x52 + x21 x32. / Este trabalho tem como objetivo generalizar os resultados feitos por Domitrz, Janeczko e Zhitomirskii em [10]. Neste artigo eles clasificaram na variedade simplética (R2, w) onde w = dx1 Λ dx2 + ... + dx2n-1 Λ dx2n é a forma simpléctica dada pelo Teorema de Darboux, todos os conjuntos que são simplectomorfos a uma curva quase homogênea fixada . Para fazer a classificação eles definem as restrições algebraicas. Nós desenvolvemos um novo método o qual chamamos de método das restrições algebraicas exatas e provamos que a classificação é resolvida para o caso não quase homogêneo N = {f(x1, x2) = x≥3 = 0} na variedade simplética (C2, w ), onde f(x1, x2) = x41 + x52 + x21 x32.
|
3 |
The method of exact algebraic restrictions / O método das restrições algebraicas exatasLito Edinson Bocanegra Rodríguez 27 April 2018 (has links)
The aim of this work is to generalize the results given by Domitrz, Janeczko and Zhitomirskii in [10]. In this article they classify in the symplectic manifold (R2, w) where w = dx1 Λ dx2 + · · · + dx2n-1 Λ dx2n is the symplectic form given by Darbouxs Theorem, all the set which are symplectomorphic to a fixed quasi homogeneous curve . To do this classification they defined the algebraic restrictions. We develop a new method called the method of exact algebraic restrictions and show that this classification is solved for the non quasi homogeneous case N = {(x1, x2) = x≥3 = 0} in the symplectic manifold (C2, w ), where f(x1, x2) = x41 + x52 + x21 x32. / Este trabalho tem como objetivo generalizar os resultados feitos por Domitrz, Janeczko e Zhitomirskii em [10]. Neste artigo eles clasificaram na variedade simplética (R2, w) onde w = dx1 Λ dx2 + ... + dx2n-1 Λ dx2n é a forma simpléctica dada pelo Teorema de Darboux, todos os conjuntos que são simplectomorfos a uma curva quase homogênea fixada . Para fazer a classificação eles definem as restrições algebraicas. Nós desenvolvemos um novo método o qual chamamos de método das restrições algebraicas exatas e provamos que a classificação é resolvida para o caso não quase homogêneo N = {f(x1, x2) = x≥3 = 0} na variedade simplética (C2, w ), onde f(x1, x2) = x41 + x52 + x21 x32.
|
4 |
Diferentes noções de diferenciabilidade para funções definidas na esfera / Different notions of differentiability for functions defined on the sphereCastro, Mario Henrique de 01 March 2007 (has links)
Neste trabalho estudamos diferentes noções de diferenciabilidade para funções definidas na esfera unitária S^n-1 de R^n, n>=2. Em relação à derivada usual, encontramos condições necessárias e/ou suficientes para que uma função seja diferenciável até uma ordem fixada. Para as outras duas, a derivada forte de Laplace-Beltrami e a derivada fraca, apresentamos algumas propriedades básicas e procuramos condições que garantam a equivalência destas com a diferenciabilidade usual. / In this work we study different notions of differentiability for functions defined on the unit sphere S^n-1 of R^n, n>=2. With respect to the usual derivative, we find necessary and/or sufficient conditions in order that a function be differentiable up to a fixed order. As for the other two, the strong Laplace-Beltrami derivative and the weak derivative, we present some basic properties about them and search for conditions that guarantee the equivalence of them with the previous one.
|
5 |
Diferentes noções de diferenciabilidade para funções definidas na esfera / Different notions of differentiability for functions defined on the sphereMario Henrique de Castro 01 March 2007 (has links)
Neste trabalho estudamos diferentes noções de diferenciabilidade para funções definidas na esfera unitária S^n-1 de R^n, n>=2. Em relação à derivada usual, encontramos condições necessárias e/ou suficientes para que uma função seja diferenciável até uma ordem fixada. Para as outras duas, a derivada forte de Laplace-Beltrami e a derivada fraca, apresentamos algumas propriedades básicas e procuramos condições que garantam a equivalência destas com a diferenciabilidade usual. / In this work we study different notions of differentiability for functions defined on the unit sphere S^n-1 of R^n, n>=2. With respect to the usual derivative, we find necessary and/or sufficient conditions in order that a function be differentiable up to a fixed order. As for the other two, the strong Laplace-Beltrami derivative and the weak derivative, we present some basic properties about them and search for conditions that guarantee the equivalence of them with the previous one.
|
Page generated in 0.1046 seconds