• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 18
  • 4
  • 4
  • 1
  • Tagged with
  • 54
  • 18
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Dynamic behaviour of electric machine stators : modelling guidelines for efficient finite-element simulations and design specifications for noise reduction / Comportement dynamique de stators de machines électriques : règles de modélisation pour simulations par éléments finis et optimisation des propriétés pour une réduction du bruit en fonctionnement

Millithaler, Pierre 09 October 2015 (has links)
Dopées par un intérêt croissant des industries telles que l’automobile, les technologies demotorisation100% électriques équipent de plus en plus de véhicules à la portée du grand public. Endépit d’une opinion commune favorable sur les faibles émissions sonores des moteurs électriques,la maîtrise des performances vibratoires et acoustiques d’une telle machine reste un challenge trèscoûteux à relever. Associant l’expertise de l’entreprise Vibrate cet du département MécaniqueAppliquée de l’institut Femto-ST, cette thèse CIFRE vise à améliorer les connaissances actuellessur le comportement mécanique de machines électriques. De nouvelles méthodes de modélisationpar éléments finis sont proposées à partir d’approches d’homogénéisation,analyses expérimentales,recalage de modèles et études de variabilité en température et en fréquence,pour permettre uneprédiction plus performante du comportement vibratoire d’un moteur électrique / Boosted by the increasing interest of industries such as automotive,100% electric engine technologies power more and more affordable vehicles for the general public.Inspite of a rather favourable common opinion about the low noisee mitted by electric motors, controlling the vibratory and acoustic performances of such machines remains a very costly challenge to take up. Associating the expertise of the company Vibratec and the institute Femto-ST Applied Mechanics Department, this industry-orientedPh.D.thesisaimsatimprovingthecurrentknowledgeaboutthe mechanicalbehaviour ofelectric machines. New finite-element modelling method sare proposedf rom homogenisation approaches,experimental analyses, model up dating procedures and variability studies in temperature and frequency, in order to predict the behaviour of an electric motor more efficiently
52

A theory for the homogenisation towards micromorphic media and its application to size effects and damage

Hütter, Geralf 19 February 2019 (has links)
The classical Cauchy-Boltzmann theory of continuum mechanics requires that the dimension, over which macroscopic gradients occur, are much larger than characteristic length scales of the microstructure. For this reason, the classical continuum theory comes to its limits for very small specimens or if material degradation leads to a localisation of deformations into bands, whose width is determined by the microstructure itself. Deviations from the predictions of the classical theory of continuum mechanics are referred to as size effects. It is well-known, that generalised continuum theories can describe size effects in principle. Especially micromorphic theories gain increasing popularity due its favorable numerical implementation. However, the formulation of the additionally necessary constitutive equations is a problem. For linear-elastic behavior, the number of material parameters increases considerably compared to the classical theory. The experimental determination of these parameters is thus very difficult. For nonlinear and history-dependent processes, even the qualitative structure of the constitutive equations can hardly be assessed solely on base of phenomenological considerations. Homogenisation methods are a promising approach to solve this problem. The present thesis starts with a critical review on the classical theory of homogenisation and the approaches on micromorphic homogenisation which are available in literature. On this basis, a theory is developed for the homogenisation of a classical Cauchy-Boltzmann continuum at the microscale towards a micromorphic continuum at the macroscale. In particular, the micro-macro-relations are specified for all macroscopic kinetic and kinematic field quantities. On the microscale, the corresponding boundary-value problem is formulated, whereby kinematic, static or periodic boundary conditions can be used. No restrictions are imposed on the material behavior, i. e. it can be linear or nonlinear. The special cases of the micropolar theory (Cosserat theory), microstrain theory and microdilatational theorie are considered. The proposed homogenisation method is demonstrated for several examples. The simplest example is the uniaxial case, for which the exact solution can be specified. Furthermore, the micromorphic elastic properties of a porous, foam-like material are estimated in closed form by means of Ritz' method with a cubic ansatz. A comparison with partly available exact solutions and FEM solutions indicates a qualitative and quantitative agreement of sufficient accuracy. For the special cases of micropolar and microdilatational theory, the material parameters are specified in the established nomenclature from literature. By means of these material parameters the size effect of an elastic foam structure is investigated and compared with corresponding results from literature. Furthermore, micromorphic damage models for quasi-brittle and ductile failure are presented. Quasi-brittle damage is modelled by propagation of microcracks. For the ductile mechanism, Gurson's limit-load approach on the microscale is extended by microdilatational terms. A finite-element implementation shows, that the damage model exhibits h-convergence even in the softening regime and that it thus can describe localisation.:1 Introduction 2 Literature review: Micromorphic theory and strain-gradient theory 2.1 Variational approach 2.1.1 Cauchy-Boltzmann continuum 2.1.2 Second gradient theory / Strain gradient theory 2.1.3 Micromorphic theory 2.1.4 Method of virtual power 2.2 Homogenisation approaches 2.2.1 Classical theory of homogenisation 2.2.2 Strain-gradient theory by Gologanu, Kouznetsova et al. 2.2.3 Micromorphic theory by Eringen 2.2.4 Average field theory by Forest et al. 2.3 Scope of the present thesis 3 Homogenisation towards a micromorphic continuum 3.1 Thermodynamic considerations and generalized Hill-Mandel lemma 3.2 Surface operator and kinetic micro-macro relations 3.3 Kinematic micro-macro relations 3.4 Porous material 3.5 Kinematic and periodic boundary conditions 3.6 Special cases 3.6.1 Strain-gradient theory / Second gradient theory 3.6.2 Micropolar theory 3.6.3 Microstrain theory 3.6.4 Microdilatational theory 4 Elastic Behaviour 4.1 Uniaxial case 4.2 Upper bound estimates by Ritz' Method 4.3 Isotropic porous material 4.4 Micropolar theory 4.5 Microdilatational theory 4.6 Size effect in simple shear 5 Damage Models 5.1 Quasi-brittle damage 5.2 Microdilatational extension of Gurson’s model of ductile damage 5.2.1 Limit load analysis for rigid ideal-plastic material 5.2.2 Phenomenological extensions 5.2.3 FEM implementation 5.2.4 Example 6 Discussion / Die klassische Cauchy-Boltzmann-Kontinuumstheorie setzt voraus, dass die Abmessungen, über denen makroskopische Gradienten auftreten, sehr viele größer sind als charakteristische Längenskalen der Mikrostruktur. Aus diesem Grund stößt die klassische Kontinuumstheorie bei sehr kleinen Proben ebenso an ihre Grenzen wie bei Schädigungsvorgängen, bei denen die Deformationen in Bändern lokalisieren, deren Breite selbst von der Längenskalen der Mikrostruktur bestimmt wird. Abweichungen von Vorhersagen der klassischen Kontinuumstheorie werden als Größeneffekte bezeichnet. Es ist bekannt, dass generalisierte Kontinuumstheorien Größeneffekte prinzipiell beschreiben können. Insbesondere mikromorphe Theorien erfreuen sich auf Grund ihrer vergleichsweise einfachen numerischen Implementierung wachsender Beliebtheit. Ein großes Problem stellt dabei die Formulierung der zusätzlich notwendigen konstitutiven Gleichungen dar. Für linear-elastisches Verhalten steigt die Zahl der Materialparameter im Vergleich zur klassischen Theorie stark an, was deren experimentelle Bestimmung sehr schwierig macht. Bei nichtlinearen und lastgeschichtsabhängigen Prozessen lässt sich selbst die qualitative Struktur der konstitutiven Gleichungen ausschließlich auf Basis phänomenologischer Überlegungen kaum erschließen. Homogenisierungsverfahren stellen einen vielversprechenden Ansatz dar, um dieses Problem zu lösen. Die vorliegende Arbeit gibt zunächst einen kritischen Überblick über die klassische Theorie der Homogenisierung sowie die im Schrifttum verfügbaren Ansätze zur mikromorphen Homogenisierung. Auf dieser Basis wird eine Theorie zur Homogenisierung eines klassischen Cauchy-Boltzmann-Kontinuums auf Mikroebene zu einem mikromorphen Kontinuum auf der Makroebene entwickelt. Insbesondere werden Mikro-Makro-Relationen für alle makroskopischen kinetischen und kinematischen Feldgrößen angegebenen. Auf der Mikroebene wird das entsprechende Randwertproblem formuliert, wobei kinematische, statische oder periodische Randbedingungen verwendet werden können. Das Materialverhalten unterliegt keinen Einschränkungen, d. h., dass es sowohl linear als auch nichtlinear sein kann. Die Sonderfälle der mikropolaren Theorie (Cosserat-Theorie), Mikrodehnungstheorie und mikrodilatationalen Theorie werden erarbeitet. Das vorgeschlagene Homogenisierungsverfahren wird für eine Reihe von Beispielen demonstriert. Als einfachstes Beispiel dient der einachsige Fall, für den die exakte Lösung angegebenen werden kann. Weiterhin werden die mikromorphen, elastischen Eigenschaften eines porösen, schaumartigen Materials mittels des Ritz-Verfahrens mit einem kubischen Ansatz in geschlossener Form abgeschätzt. Ein Vergleich mit teilweise verfügbaren exakten Lösungen sowie FEM-Lösungen weist eine qualitative und quantitative Übereinstimmung hinreichender Genauigkeit aus. Für die Sonderfälle mikropolaren und mikrodilatationalen Theorien werden die Materialparameter in der im Schrifttum üblichen Nomenklatur angegebenen. Mittels dieser Materialparameter wird der Größeneffekt in einer elastischen Schaumstruktur untersucht und mit entsprechenden Ergebnissen aus dem Schrifttum verglichen. Desweiteren werden mikromorphe Schädigungsmodelle für quasi-sprödes und duktiles Versagen vorgestellt. Quasi-spröde Schädigung wird durch das Wachstum von Mikrorissen modelliert. Für den duktilen Mechanismus wird der Ansatz von Gurson einer Grenzlastanalyse auf Mikroebene um mikrodilatationale Terme erweitert. Eine Finite-Elemente-Implementierung zeigt, dass das Schädigungsmodell auch im Entfestigungsbereich h-Konvergenz aufweist und die Lokalisierung beschreiben kann.:1 Introduction 2 Literature review: Micromorphic theory and strain-gradient theory 2.1 Variational approach 2.1.1 Cauchy-Boltzmann continuum 2.1.2 Second gradient theory / Strain gradient theory 2.1.3 Micromorphic theory 2.1.4 Method of virtual power 2.2 Homogenisation approaches 2.2.1 Classical theory of homogenisation 2.2.2 Strain-gradient theory by Gologanu, Kouznetsova et al. 2.2.3 Micromorphic theory by Eringen 2.2.4 Average field theory by Forest et al. 2.3 Scope of the present thesis 3 Homogenisation towards a micromorphic continuum 3.1 Thermodynamic considerations and generalized Hill-Mandel lemma 3.2 Surface operator and kinetic micro-macro relations 3.3 Kinematic micro-macro relations 3.4 Porous material 3.5 Kinematic and periodic boundary conditions 3.6 Special cases 3.6.1 Strain-gradient theory / Second gradient theory 3.6.2 Micropolar theory 3.6.3 Microstrain theory 3.6.4 Microdilatational theory 4 Elastic Behaviour 4.1 Uniaxial case 4.2 Upper bound estimates by Ritz' Method 4.3 Isotropic porous material 4.4 Micropolar theory 4.5 Microdilatational theory 4.6 Size effect in simple shear 5 Damage Models 5.1 Quasi-brittle damage 5.2 Microdilatational extension of Gurson’s model of ductile damage 5.2.1 Limit load analysis for rigid ideal-plastic material 5.2.2 Phenomenological extensions 5.2.3 FEM implementation 5.2.4 Example 6 Discussion
53

Enhancing the Performance of Si Photonics: Structure-Property Relations and Engineered Dispersion Relations

Nikkhah, Hamdam January 2018 (has links)
The widespread adoption of photonic circuits requires the economics of volume manufacturing offered by integration technology. A Complementary Metal-Oxide Semiconductor compatible silicon material platform is particularly attractive because it leverages the huge investment that has been made in silicon electronics and its high index contrast enables tight confinement of light which decreases component footprint and energy consumption. Nevertheless, there remain challenges to the development of photonic integrated circuits. Although the density of integration is advancing steady and the integration of the principal components – waveguides, optical sources and amplifiers, modulators, and photodetectors – have all been demonstrated, the integration density is low and the device library far from complete. The integration density is low primarily because of the difficulty of confining light in structures small compared to the wavelength which measured in micrometers. The device library is incomplete because of the immaturity of hybridisation on silicon of other materials required by active devices such as III-V semiconductor alloys and ferroelectric oxides and the difficulty of controlling the coupling of light between disparate material platforms. Metamaterials are nanocomposite materials which have optical properties not readily found in Nature that are defined as much by their geometry as their constituent materials. This offers the prospect of the engineering of materials to achieve integrated components with enhanced functionality. Metamaterials are a class of photonic crystals includes subwavelength grating waveguides, which have already provided breakthroughs in component performance yet require a simpler fabrication process compatible with current minimum feature size limitations. The research reported in this PhD thesis advances our understanding of the structure-property relations of key planar light circuit components and the metamaterial engineering of these properties. The analysis and simulation of components featuring structures that are only just subwavelength is complicated and consumes large computer resources especially when a three dimensional analysis of components structured over a scale larger than the wavelength is desired. This obstructs the iterative design-simulate cycle. An abstraction is required that summarises the properties of the metamaterial pertinent to the larger scale while neglecting the microscopic detail. That abstraction is known as homogenisation. It is possible to extend homogenisation from the long-wavelength limit up to the Bragg resonance (band edge). It is found that a metamaterial waveguide is accurately modeled as a continuous medium waveguide provided proper account is taken of the emergent properties of the homogenised metamaterial. A homogenised subwavelength grating waveguide structure behaves as a strongly anisotropic and spatially dispersive material with a c-axis normal to the layers of a one dimensional multi-layer structure (Kronig-Penney) or along the axis of uniformity for a two dimensional photonic crystal in three dimensional structure. Issues with boundary effects in the near Bragg resonance subwavelength are avoided either by ensuring the averaging is over an extensive path parallel to boundary or the sharp boundary is removed by graded structures. A procedure is described that enables the local homogenised index of a graded structure to be determined. These finding are confirmed by simulations and experiments on test circuits composed of Mach-Zehnder interferometers and individual components composed of regular nanostructured waveguide segments with different lengths and widths; and graded adiabatic waveguide tapers. The test chip included Lüneburg micro-lenses, which have application to Fourier optics on a chip. The measured loss of each lens is 0.72 dB. Photonic integrated circuits featuring a network of waveguides, modulators and couplers are important to applications in RF photonics, optical communications and quantum optics. Modal phase error is one of the significant limitations to the scaling of multimode interference coupler port dimension. Multimode interference couplers rely on the Talbot effect and offer the best in-class performance. Anisotropy helps reduce the Talbot length but temporal and spatial dispersion is necessary to control the modal phase error and wavelength dependence of the Talbot length. The Talbot effect in a Kronig-Penny metamaterial is analysed. It is shown that the metamaterial may be engineered to provide a close approximation to the parabolic dispersion relation required by the Talbot effect for perfect imaging. These findings are then applied to the multimode region and access waveguide tapers of a multi-slotted waveguide multimode interference coupler with slots either in the transverse direction or longitudinal direction. A novel polarisation beam splitter exploiting the anisotropy provided by a longitudinally slotted structure is demonstrated by simulation. The thesis describes the design, verification by simulation and layout of a photonic integrated circuit containing metamaterial waveguide test structures. The test and measurement of the fabricated chip and the analysis of the data is described in detail. The experimental results show good agreement with the theory, with the expected errors due to fabrication process limitations. From the Scanning Electron Microscope images and the measurements, it is clear that at the boundary of the minimum feature size limit, the error increases but still the devices can function.
54

Entwicklung und Bewertung von effizienten Berechnungskonzepten für keramische Filter

Storm, Johannes 02 December 2016 (has links)
Die vorliegende Dissertation beschäftigt sich mit der thermo-mechanischen Beschreibung und Bewertung von keramischen Filtern für die Metallschmelze-Filtration mithilfe der Finiten-Elemente-Methode. Infolge des zellularen Aufbaus des Werkstoffs handelt es sich um ein Mehrskalenproblem. Grundlegende Aufgaben der Arbeit waren deshalb die geometrische und mechanische Modellbildung sowie die Untersuchung verschiedener effizienzsteigernder Methoden zur Gewinnung einer akkuraten numerischen Lösung. Dabei wurden sowohl verschiedene Verfahren aus der Fachliteratur implementiert und kritisch bewertet, als auch neue Ansätze verfolgt. Die Untersuchungen konzentrierten sich auf das effektive elastische und elastisch-plastische Verhalten von Kelvin-, Weaire-Phelan- und Voronoi-Strukturen. Insbesondere die entwickelten Methoden und Werkzeuge zur automatisierten Modellbildung gestatten in einfacher Weise die Umsetzung von Parameterstudien und Optimierungsaufgaben. Aus darauf aufbauenden Sensitivitätsstudien wurden Empfehlungen hinsichtlich der geometrischen und mechanischen Modellbildung für zellulare Werkstoffe abgeleitet. Diese betreffen auch vielfach eingesetzte Methoden zur Modellreduktion für diese Werkstoffe und tragen somit zukünftig zu einer effizienteren Bewertung von Filterstrukturen bei.

Page generated in 0.0818 seconds