Spelling suggestions: "subject:"hemolytic substitution"" "subject:"haemolytic substitution""
1 |
Réactivités de NHC-Boranes Soufrés / Reactivities of Thiyl NHC-BoranesVallet, Anne-Laure 03 October 2014 (has links)
Avec le développement des concepts de la chimie verte, il est devenu nécessaire de remplacer les métaux toxiques par des composés plus respectueux de l’environnement. Donneurs d’hydrogène pour des réactions radicalaires, les hydrures de trialkylétain sont encore très utilisés. Les NHC-boranes se sont révélés de bons remplaçants pour les réactions de désoxygénation. Cependant, les réactions de déshalogénation effectuées avec des NHC-boranes sont moins efficaces et il a fallu avoir recours au concept de catalyse à polarité inversée. Ces travaux ont été le point de départ de cette thèse où la synthèse de nouveaux NHC-boranes possédant une liaison B-S ou B-N est développée. L’étude des propriétés de ces nouveaux complexes a été effectuée et des applications en chimie organique et en science des polymères ont été trouvées. Par ailleurs, en vue d’étudier les effets polaires sur la formation et la réactivité des radicaux boryles, une nouvelle famille de carbène-boranes a été synthétisée. / Along with the development of green chemistry, it became necessary to avoid toxic metallic complexes in organic reactions and replace them by more sustainable compounds. An hydrogen donors for radical reactions, trialkylstannanes are still widely used. NHC-boranes seem to be good substitutes for deoxygenation reactions. However, dehalogenation reactions are less effective and polar reversal catalysis was used. This work was the starting point of this Ph.D thesis where the synthesis of new NHC-boranes bearing a B-S or B-N bound is developed. The study of the properties of these new complexes was performed and applications in organic chemistry as well as in polymer science were found. Besides, to study polar effects on the formation and on the reactivity of boryl radicals, a new family of carbene-boranes was synthesized.
|
2 |
SH2 sur les dialkylzincs par les radicaux α-alcoxycarbonyle, carbozincations et additions radicalaires impliquant des ynamides : approches expérimentales et théoriques / Homolytic substitution at dialkylzincs by α-alcoxycarbonyl radicals, carbozincations and radical additions involving ynamides : theoretical and experimental approachesLingua, Hugo 28 November 2017 (has links)
La réactivité de l’α-bromoacrylate d’éthyle et du benzylidène malonate d’éthyle vis à vis des dialkylzincs en milieu aérobie a été étudiée afin d’évaluer la capacité des radicaux α-alcoxycarbonyle tertiaires à évoluer par SH2 sur le métal pour conduire à un énolate de zinc. Le travail expérimental réalisé à partir de l’α-bromoacrylate d’éthyle a permis la synthèse de cyclopropanes et de céto-esters. Dans le cas des benzylidène malonates la réversibilité de l’addition du diéthylzinc sur le substrat, a été mise en évidence. L’effet inhibiteur d’additifs tels que TMSCl ou CuCl concourt à indiquer que les peroxydes de zinc formés dans le milieu pourraient y tenir un rôle clé. L’étude théorique a mis en évidence pour les 2 substrats étudiés, le rôle crucial de la stabilisation de l’énolate formé sous la forme d’un chélate à 5 ou 6 chaînons. Les carbozincations d’ynamides via le CuI ou le FeCl2 en présence de dialkylzincs ont été étudiées pour la synthèse régio-et stéréosélective d'énamides tri- ou tétrasubstitués. Le CuI s’est montré plus performant et moins substrat-dépendant que FeCl2. Une étude théorique a été réalisée afin de mieux comprendre ce phénomène. Enfin, l'addition intermoléculaire des radicaux sulfanyle sur les ynamides a été revisitée. Les calculs théoriques et les résultats expérimentaux montrent que la régio- et stéréosélectivité de la réaction dépendent de la nature du substituant porté par le carbone en β de l’atome d’azote et des conditions expérimentales. L’addition intermoléculaire inédite d’un radical carboné électrophile sur ces substrats a pu être décrite et ouvre de nouvelles perspectives quant à la synthèse d’énamides tétrasubstitués originaux. / The reactivity of ethyl α-bromoacrylate and ethyl benzylidene malonate towards dialkylzincs in aerobic medium was studied in order to evaluate the capacity of tertiary α-alcoxycarbonyl radicals to undergo SH2 at zinc leading to a zinc enolate. The use of ethyl α-bromoacrylate allowed the synthesis of cyclopropanes and keto-esters. With the second substrate, the addition of the alkyl group was shown to be reversible. The inhibitor effect of additives like TMSCl or CuCl suggested that zinc peroxydes formed in situ could play a key role in the process. Theoretical studies highlighted the crucial role of the stabilization of the zinc enolate through the formation of a 5 or 6-membered chelate. Regio- and stereoselective synthesis of tri- and tetra-substituted enamides was achieved through the carbozincation of ynamides in the presence of dialkylzincs and CuI or FeCl2 as catalyst. CuI was shown to be more efficient and less substrate-dependent than FeCl2. Molecular modelings were performed to better understand this phenomen. Finally, intermolecular addition of sulfanyl radicals onto ynamides was revisited. Theoretical calculations and experimental results showed that the regio- and stereo-selectivity of the process depended on the nature of the substituent on the carbon in β position of the nitrogen atom and on experimental conditions. Unprecedented intermolecular addition of a carbon-centered radical has been described and opened new perspectives for the synthesis of original tetrasubstituted enamides.
|
3 |
Design, Synthesis and Evaluation of Catalytic Chalcogenide AntioxidantsShanks, David January 2005 (has links)
<p>This thesis describes the design, synthesis and evaluation of novel chalcogenide antioxidants. </p><p>A computational model for the prediction of antioxidant properties of chalcogen-containing antioxidants has been developed. The model has been used to probe the relationship between geometry, chalcogen substitution and activity for a series of α-tocopherol analogues of varying ring size and chalcogen substitution. </p><p>A series of simple diaryltellurides and aryl-alkyl tellurides have been synthesised. The selenium analogue of α-tocopherol has been synthesised in eleven steps and 6.5% total yield, with formation of the selenacycle by homolytic substitution at selenium as the key step. Tentative steps have been taken towards the construction of the tellurotocopherol structure by microwave-assisted radical cyclisation methodologies.</p><p>A combination of EPR and kinetic studies has been used to assess the antioxidant characteristics of selenotocopherol. A two-phase lipid peroxidation model revealed that the selenotocopherol is not catalytically regenerable. The same model has been used to assess the cooperativity of mixtures of tellurides with α-tocopherol and an aqueous thiol. It was seen that combinations of α-tocopherol with tellurides incorporating phenols displayed synergistic properties, and the mechanistic implications of this are discussed. </p><p>DSC measurements have been used to assess the antioxidant activity of tellurides together with coantioxidants in melts of polypropylene. The tellurides display excellent activity together with thiol or a sterically hindered phenol antioxidant. In chemiluminescence studies performed at lower temperatures, the telluride mixtures still outperform commercial blends, but to a lesser extent. In a synthetic oil a telluride has demonstrated promising antioxidant properties together with a thiol or phenolic antioxidant. However, under more realistic test conditions the telluride acts instead as a prooxidant. Some tellurides have been evaluated as antioxidants in paper. Water-soluble tellurides appear to function better than lipophilic tellurides, but neither is comparable in activity to α-tocopherol.</p>
|
4 |
Design, Synthesis and Evaluation of Catalytic Chalcogenide AntioxidantsShanks, David January 2005 (has links)
This thesis describes the design, synthesis and evaluation of novel chalcogenide antioxidants. A computational model for the prediction of antioxidant properties of chalcogen-containing antioxidants has been developed. The model has been used to probe the relationship between geometry, chalcogen substitution and activity for a series of α-tocopherol analogues of varying ring size and chalcogen substitution. A series of simple diaryltellurides and aryl-alkyl tellurides have been synthesised. The selenium analogue of α-tocopherol has been synthesised in eleven steps and 6.5% total yield, with formation of the selenacycle by homolytic substitution at selenium as the key step. Tentative steps have been taken towards the construction of the tellurotocopherol structure by microwave-assisted radical cyclisation methodologies. A combination of EPR and kinetic studies has been used to assess the antioxidant characteristics of selenotocopherol. A two-phase lipid peroxidation model revealed that the selenotocopherol is not catalytically regenerable. The same model has been used to assess the cooperativity of mixtures of tellurides with α-tocopherol and an aqueous thiol. It was seen that combinations of α-tocopherol with tellurides incorporating phenols displayed synergistic properties, and the mechanistic implications of this are discussed. DSC measurements have been used to assess the antioxidant activity of tellurides together with coantioxidants in melts of polypropylene. The tellurides display excellent activity together with thiol or a sterically hindered phenol antioxidant. In chemiluminescence studies performed at lower temperatures, the telluride mixtures still outperform commercial blends, but to a lesser extent. In a synthetic oil a telluride has demonstrated promising antioxidant properties together with a thiol or phenolic antioxidant. However, under more realistic test conditions the telluride acts instead as a prooxidant. Some tellurides have been evaluated as antioxidants in paper. Water-soluble tellurides appear to function better than lipophilic tellurides, but neither is comparable in activity to α-tocopherol.
|
5 |
A Radical Approach to Syntheses and MechanismsHancock, Amber N. 24 October 2011 (has links)
The critically important nature of radical and radical ion mechanisms in biology and chemistry continues to be recognized as our understanding of these unique transient species grows. The work presented herein demonstrates the versatility of kinetic studies for understanding the elementary chemical reactions of radicals and radical ions.
Chapter 2 discusses the use of direct ultrafast kinetics techniques for investigation of crucially important enzymatic systems; while Chapter 3 demonstrates the value of indirect competition kinetics techniques for development of synthetic methodologies for commercially valuable classes of compounds. The mechanism of decay for aminyl radical cations has received considerable attention because of their suspected role as intermediates in the oxidation of tertiary amines by monoamine oxygenases and the cytochrome P450 family of enzymes. Radical cations are believed to undergo deprotonation as a key step in catalysis. KIE studies performed by previous researchers indicate N,N-dimethylaniline radical cations deprotonate in the presence of the bases acetate and pyridine. By studying the electrochemical kinetics of the reaction of para substituted N,N-dimethylaniline radical cations with acetate anion, we have produced compelling evidence to the contrary. Rather than deprotonation, acetate reacts with N,N-dimethylaniline radical cation by electron transfer, generating the neutral amine and acetoxyl radical.
Transport properties of reactants and solvent polarity changes were investigated and confirmed not to influence the electrochemical behavior forming the basis for our mechanistic hypothesis. To reconcile our conclusion with earlier results, KIEs were reinvestigated electrochemically and by nanosecond laser flash photolysis. Rather than a primary isotope effect (associated with C-H bond cleavage), we believe the observed KIEs are secondary, and can be rationalized on the basis of a quantum effect due to hyperconjugative stabilization in aromatic radical cations during an electron transfer reaction. Product studies performed by constant potential coulometry indicate N,N-dimethylaniline radical cations are catalytic in carboxylate oxidations. Collectively, our results suggest that aminyl radical cation deprotonations may not be as facile as was previously thought, and that in some cases, may not occur at all.
Interest in design and synthesis of selenium containing heterocycles stems from their ability to function as antioxidants, anti-virals, anti-inflammatories, and immunomodulators. To establish synthetic feasibility of intramolecular homolytic substitution at selenium for preparation of selenocycles, we set out to determine what factors influence cyclization kinetics.
A series of photochemically labile Barton and Kim esters have been syntheisized and employed as radical precursors. The effect of leaving radical stability on kinetics has been investigated through determination of rate constants and activation parameters for intramolecular homolytic substitution of the corresponding radicals via competition experiments. Notable leaving group effects on measured kinetic parameters show more facile reactions for radical precursors with more stable leaving radicals. Moreover, cyclizations to form six-membered (as opposed to five- membered) ring systems exhibited order of magnitude decreases in rate constants for a given leaving radical. Our results are congruent with expectations for radical cyclizations trends for the varied experimental parameters and suggest homolytic substitution affords a convenient means for synthesis of selenocycles. / Ph. D.
|
6 |
Nouvelles méthodes de génération de radicaux silylés : application à des processus radicalaires sans étainRouquet, Guy 13 December 2010 (has links)
Deux nouveaux concepts, visant à reproduire la chimie radicalaire des diétains à l’aide de radicaux centrés sur le silicium, sont présentés à travers ce manuscrit. Le premier concept introduit les “silaboranes”, des molécules constituées d’un motif de type silane et d’un atome de bore. Ceux-ci ont pour la première fois été exploités comme générateurs de radicaux triméthylsilyle via l’utilisation de la réaction de SHi sur le silicium (Substitution Homolytique Intramoléculaire) à partir de disilanes. Des études cinétiques et de modélisation moléculaires de la réaction de SHi ont, entre autres, permis de rationaliser les résultats. Le potentiel des “silaboranes” en tant que substituts des diétains a été entrevu à travers des réactions d’additions radicalaires d’halogénures sur des éthers d’oxime sulfonylés. Le concept des "silaboranes" a ensuite été étendu à des hydrures de silicium, grâce à une réaction de transfert d’hydrogène intramoléculaire, permettant de produire des radicaux triphénylsilyles. Le second concept a révélé la capacité des allyl tris(triméthylsilyl)silanes pour reproduire les réactions radicalaires des diétains via une réaction de beta-fragmentation du groupement tris(triméthylsilyle). Ces substrats, source de radicaux tris(triméthysilyle) et simples d’accès, se sont avérés d’intéressants candidats pour assister l’addition de dérivés bromés et iodés sur des substrats sulfonylés de type allyl, vinyl et éther d’oxime. / Two new concepts, aiming to substitute ditin radical chemistry by using silyl radicals, are developed throughout this manuscript. The first concept introduces “silaboranes”, molecules made up of a silane unit and a boron atom. For the first time, the ability of these precursors to generate trimethylsilyl radicals was demonstrated by using the SHi reaction at silicon (Intramolecular Homolytic Substitution) from disilanes. Besides, results are supported by kinetic and computationnal studies of the SHi reaction at silicon. Capacity of “silaboranes” to achieve tin-free radical processes was demonstrated thanks to radical addition of halogenated species on sulfonyl oxime ethers. “Silaboranes” concept was then extended to silicon hydrides using intramolecular hydrogen transfer as source of triphenylsilyl radicals. The second concept highlights the ability of allyl tris(trimethylsilyl)silanes to make possible tin-free radical reactions via beta-fragmentation of the tris(trimethylsilyl) group. These compounds, source of tris(trimethylsilyl) radicals and easily available, open very interesting perspectives in tin-free radical addition of bromides and iodides species on sulfonyl derivatives as allyl sulfones, vinyl sulfones or sulfonyl oxime ethers.
|
Page generated in 0.1185 seconds