Spelling suggestions: "subject:"homotopia"" "subject:"homotopies""
1 |
Homotopias finitamente fixadas e pares de homotopias finitamente coincidentesCotrim, Fabiana Santos 02 March 2011 (has links)
Made available in DSpace on 2016-06-02T20:28:26Z (GMT). No. of bitstreams: 1
3729.pdf: 608631 bytes, checksum: 9ccfdd58a15118a67f48b346502a277e (MD5)
Previous issue date: 2011-03-02 / Financiadora de Estudos e Projetos / In the area of the theory of fixed points and coincidences of Nielsen, this study aims to develop techniques to minimize the set of fixed points in homotopies and the set of coincidences in pairs of homotopies. The techniques are based on Hopf construction for selfmaps of polyhedrons and on the results presented by Helga Schirmer in context of _x-finite homotopies. For pairs of homotopies, we created the concept of coincidences finite and we proved that certain pairs of homotopies can have their set of coincidences minimized in order to become coincidences finite. / No contexto da teoria de pontos fixos e coincidências de Nielsen, este trabalho destina-se ao desenvolvimento de técnicas de minimização do conjunto de pontos fixos em homotopias e do conjunto de coincidências em pares de homotopias. As técnicas baseiam-se na construçãoo de Hopf para auto-aplicações de poliedros e nos resultados apresentados por Helga Schirmer (1979) para homotopias finitamente fixadas. Para pares de homotopias, criamos o conceito de finitamente coincidentes e provamos que certos pares de homotopias podem ter seu conjunto de coincidências minimizado, a fim de se tornarem finitamente coincidentes.
|
2 |
Homotopias e aplicações / Homotopies and applicationsQuemel, Taísa Fernanda de Lima [UNESP] 26 February 2016 (has links)
Submitted by TAÍSA FERNANDA DE LIMA QUEMEL null (taisafernanda.10@hotmail.com) on 2016-03-10T20:25:22Z
No. of bitstreams: 1
Versão final_Dissertação_Taísa Quemel.pdf: 674351 bytes, checksum: 3498053a8bb53e50ac3119a10d45a0c5 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-03-11T12:17:58Z (GMT) No. of bitstreams: 1
quemel_tfl_me_sjrp.pdf: 674351 bytes, checksum: 3498053a8bb53e50ac3119a10d45a0c5 (MD5) / Made available in DSpace on 2016-03-11T12:17:58Z (GMT). No. of bitstreams: 1
quemel_tfl_me_sjrp.pdf: 674351 bytes, checksum: 3498053a8bb53e50ac3119a10d45a0c5 (MD5)
Previous issue date: 2016-02-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo deste trabalho é mostrar que πn(X) é sempre abeliano quando n ≥ 2 e que π1(X) é abeliano quando X for um H-espaço e por fim calcular alguns grupos de homotopia utilizando sequência exata de uma fibração. / The goal of this work is to show that πn(X) is always abelian when n ≥ 2 and that π1(X) is abelian when X is an H-space and finally calculate some homotopy groups using the exact sequence of a fibration.
|
Page generated in 0.0399 seconds