• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 11
  • 11
  • 9
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 113
  • 113
  • 36
  • 35
  • 20
  • 16
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The use of lysozyme-HCl and nisin to control the causal agent of chalkbrood disease (Ascosphaera apis (Maassen ex Claussen) Olive and Spiltoir) in honey bees (Apis mellifera L.)

Van Haga, Amanda L. 11 1900 (has links)
Chalkbrood, caused by Ascosphaera apis (Maassen ex Claussen) Olive & Spiltor, is a cosmopolitan fungal disease of honey bee larvae (Apis mellifera L.) for which there is no chemotherapeutic control. Using in vitro larval rearing methods, lysozyme-HCl, a food-grade antimicrobial extracted from hen egg albumen, was found to suppress chalkbrood at levels of 0.75-1.5% (g/mL) of larval diet. In field trials, lysozyme-HCl did not affect adult bee survival or brood production and did effectively suppress the development of chalkbrood disease. Daily chalkbrood mummy production decreased by a factor of 10 in colonies treated with three treatments of 6000 mg of lysozyme-HCl when compared with infected, untreated controls and reduced disease symptoms to levels observed in uninfected colonies. Honey production was also found to be significantly negatively correlated with increased disease severity. Lysozyme-HCl is a promising safe therapeutic agent for the control of chalkbrood in honey bee colonies.
22

Effects of neonicotinoid pesticide exposure on bee health : molecular, physiological and behavioural investigations

Collison, Elizabeth Jane January 2015 (has links)
Neonicotinoid exposure has been recognised as potentially impacting upon bee health, but whether realistic exposure scenarios are driving declines in bee health is not known. This thesis contributes new insights and perspectives to this research field investigating the use of molecular, physiological and behavioural endpoints as potential ecotoxicological markers for pesticide risk assessment. The thesis presents experimental data for dietary exposures of the European honey bee, Apis mellifera, and the buff-tailed bumble bee, Bombus terrestris, to one of two neonicotinoid pesticides, imidacloprid and thiamethoxam. The first part of this thesis explores impacts of chronic dietary exposures to neonicotinoid pesticides on bee immunocompetence- the ability to mount an immune response- using an artificial challenge to invoke an immune response in adult workers. Levels of phenoloxidase, an enzyme involved in melanisation and part of the bee’s defence system, were largely constitutive and resilient to exposure in honey bees and bumble bees. In honey bees, transient transcriptional changes in antimicrobial effector genes were observed following neonicotinoid exposure, but the physiological antimicrobial response was unaffected. In bumble bees, the induced antimicrobial response was impaired following neonicotinoid exposure, but only when exposed to concentrations likely higher than realistic environmental exposure scenarios. The next phase of this thesis investigates whether transcriptional, physiological and behavioural endpoints associated with the functioning of the honey bee hypopharyngeal gland were altered by imidacloprid exposure. Imidacloprid exposure led to transcriptional changes in foraging genes (associated with the control of temporal polyethism) and major royal jelly proteins (fed to developing larvae by nurse workers) and enzymatic changes in glucose oxidase (an enzyme involved in social immunity), which I hypothesise are linked with hypopharyngeal gland development. Despite these laboratory observations, no behavioural effects were observed in a field setting, monitored using Radio Frequency Identification transponders. Lastly, using RNA-Sequencing to investigate changes across the honey bee transcriptome, this thesis identified a suite of genes that were differentially expressed in adult workers in response to immune challenge and/or dietary neonicotinoid exposure. Wounding and bacterial-like infection led to upregulation of known immune genes, including a peptidoglycan recognition protein and antimicrobial effectors. Chronic exposure to thiamethoxam and imidacloprid led to downregulation of genes associated with several metabolic pathways, such as oxidative phosphorylation, pyruvate- and purine- metabolic pathways, as well as ribosomal activity. Some of these genes identified provide candidates for further study to elucidate functional effects mechanisms and better understand health outcomes, as well as potential new biomarkers for use in pesticide risk assessment. This thesis presents novel findings and offers opportunities for future research that will be of interest to a wide audience, including risk assessors and policy makers, as well as the broader biological community, including ecotoxicologists, insect physiologists and molecular biologists.
23

Effects of short term exposures to Glyphosate on Apis mellifera : investigating flying time and searching abilities in a laboratory environment / Effekter av korttids exponering av glyfosat på Apis mellifera : tester av flyg- och sökförmåga i en laboratoriemiljö

Lövbom, Oskar January 2018 (has links)
Pollination is an important ecosystem service necessary for 80% of global plant reproduction. This service can also improve fruit production and is essential for 84% of all crops grown in the EU. However, some pollinators have been declining for the last decades and the important honey bee is no exception. One of the reasons to this decline is believed to be agricultural use of chemicals (i.e. fungicides, herbicides and insecticides). One of the most commonly used herbicides is RoundUp, which include glyphosate as its active substance. In this study, I test if RoundUp affects honey bee behaviour by exposing them during a short-term period to one of three different concentrations (0 mg/l, 5 mg/l and 50 mg/l). The test was conducted in a wind tunnel and aimed to test the hypothesis that glyphosate affects searching abilities and flight time of honey bees. In contrast to my hypothesis, I was unable to detect effects on searching ability. However, method limitations might have been the reason only three bees, out of 147, found the food. My analysis showed neither any effects from RoundUp on fly time (P>0.05) or activity (P=0.066). However, in my data I could see a negative trend in activity and due to earlier data collected around glyphosate, I argue that exposure to glyphosate might have a negative long-term impact on honey bee survival.
24

Nové trendy v prevenci a zdolávání varoózy / New trends in prevention and negotiation of varroosis

LUKÁŠKOVÁ, Jana January 2017 (has links)
Varroa destructor, in Czech language known as kleštík včelí, is a parasitic mite (of eastern bee and honeybee) which causes the disease called varroasis. Kleštík is like a black passenger on the body of bees and drones, which commonly penetrate foreign hives, and because of that they can be considered the main vector of parasite. In the Czech Republic we fight this parasite using methods every since its discovery in the early 80s of the 20th century. Some methods are defined by the Veterinary Institute in the Czech Republic and the others were disovered by the beekeepers themselves. The main purpose of this thesis was to determine what are current methods to suppress or to completely obliterate the infection caused by Varroa destructor. What methods have proved to be most effective, and what new methods were invented from the time of its discovery. I conducted a field experiment bee hives belonging to beekeeping organizations Trhové Sviny during the 2015 and the 2016. The practical part of my research ( i.e. occurrence and also the review of varroasis disease treatment) had little effect on normal activities of beekeepers. The process of Varroa destructor presence, its treatment and the methods of treatment researched. Based on the collected samples sent to Veterinary Administration for testing to find out whether are the Varroa counter measures effective or not. The conclusion of my reasearch ist he unificated treatment and detection of Varroa are of the main importance. That goes not only for the beekeeping associations but also by unregistered beekeepers. Because the amount of bee colonies here in the Czech Republic is huge, the use of alternative treatment and suppresing procedures as well as the intentional breeding for resistance against Varroa are rather unrealistic, the only viable option fort he moment , is to follow Veterinary Services guidelines.
25

Výskyt a prevalence Nosema spp. u včely medonosné (Apis mellifera) / Occurrence and prevalence of Nosema spp. in European honey bee (Apis mellifera)

ANDERLOVÁ, Jana January 2013 (has links)
Nosemosis is a serious disease of bees caused by microsporidia Nosema apis and Nosema ceranae. Both species are widely spread around the world and in the Czech Republic. The aim of this thesis was to evaluate the incidence and prevalence of Nosema spp., describe the species variability and assess the influence of the season. PCR method amplifying part of the gene encoding the small ribosomal subunit rRNA was used to identify the species of Nosema spp. A total 77 samples originated from 17 farmers were examined Out of them, 71% (55 samples) were positive for the presence of Nosema spp. Samples were collected in five seasons in 2011?2012. Both N. apis, and N. ceranae were detected in all breeds. In 2011, N. apis was detected as causative agent of nosemosis except one sample, where the mixed infection was detected. In 2012, N. ceranae was observed in mono- or mixed infections. Currently monoinfections of N. apis were not detected in 2012. Generally, the highest occurrence was detected in the autumn and winter months.
26

Modulation of Sensing and Sharing Food-Related Information in the Honey Bee

January 2017 (has links)
abstract: Food is an essential driver of animal behavior. For social organisms, the acquisition of food guides interactions with the environment and with group-mates. Studies have focused on how social individuals find and choose food sources, and share both food and information with group-mates. However, it is often not clear how experiences throughout an individual's life influence such interactions. The core question of this thesis is how individuals’ experience contributes to within-caste behavioral variation in a social group. I investigate the effects of individual history, including physical injury and food-related experience, on individuals' social food sharing behavior, responses to food-related stimuli, and the associated neural biogenic amine signaling pathways. I use the eusocial honey bee (Apis mellifera) system, one in which individuals exhibit a high degree of plasticity in responses to environmental stimuli and there is a richness of communicatory pathways for food-related information. Foraging exposes honey bees to aversive experiences such as predation, con-specific competition, and environmental toxins. I show that foraging experience changes individuals' response thresholds to sucrose, a main component of adults’ diets, depending on whether foraging conditions are benign or aversive. Bodily injury is demonstrated to reduce individuals' appetitive responses to new, potentially food-predictive odors. Aversive conditions also impact an individual's social food sharing behavior; mouth-to-mouse trophallaxis with particular groupmates is modulated by aversive foraging conditions both for foragers who directly experienced these conditions and non-foragers who were influenced via social contact with foragers. Although the mechanisms underlying these behavioral changes have yet to be resolved, my results implicate biogenic amine signaling pathways as a potential component. Serotonin and octopamine concentrations are shown to undergo long-term change due to distinct foraging experiences. My work serves to highlight the malleability of a social individual's food-related behavior, suggesting that environmental conditions shape how individuals respond to food and share information with group-mates. This thesis contributes to a deeper understanding of inter-individual variation in animal behavior. / Dissertation/Thesis / Doctoral Dissertation Biology 2017
27

Measuring Impacts of Neem Oil and Amitraz on Varroa destructor and Apis Mellifera in Different Agricultural Systems of South Florida

Alvarez-Ventura, Stephany C 01 September 2011 (has links)
This thesis analyzes mixtures of neem oil and amitraz as alternative control for Varroa destructor, a major pest of Apis mellifera, under different agricultural settings. In organic and conventional farms, the different treatments were applied in colonies to determine impacts on mite loss, colony strength, and honey yield. The results demonstrated neem to have the least effective control on mite mortality, while the neem and amitraz mixture had the most. Furthermore, no long term impacts on queen fecundity and colony strength were noticed between treatments. However, queen fecundity and honey yield was significantly higher in sites with higher flower abundance and diversity, demonstrating higher colony strength in these sites. Further understanding of the relationship between apiculture and agricultural management is vital for conservation of pollinator health and associated habitats.
28

Neurogenomic Signatures of Spatiotemporal Memories in Time-Trained Forager Honey Bees

Naeger, Nicholas L., Van Nest, Byron N., Johnson, Jennifer N., Boyd, Sam D., Southey, Bruce R., Rodriguez-Zas, Sandra L., Moore, Darrell, Robinson, Gene E. 01 March 2011 (has links)
Honey bees can form distinct spatiotemporal memories that allow them to return repeatedly to different food sources at different times of day. Although it is becoming increasingly clear that different behavioral states are associated with different profiles of brain gene expression, it is not known whether this relationship extends to states that are as dynamic and specific as those associated with foraging-related spatiotemporal memories. We tested this hypothesis by training different groups of foragers from the same colony to collect sucrose solution from one of two artificial feeders; each feeder was in a different location and had sucrose available at a different time, either in the morning or afternoon. Bees from both training groups were collected at both the morning and afternoon training times to result in one set of bees that was undergoing stereotypical food anticipatory behavior and another that was inactive for each time of day. Between the two groups with the different spatiotemporal memories, microarray analysis revealed that 1329 genes were differentially expressed in the brains of honey bees. Many of these genes also varied with time of day, time of training or state of food anticipation. Some of these genes are known to be involved in a variety of biological processes, including metabolism and behavior. These results indicate that distinct spatiotemporal foraging memories in honey bees are associated with distinct neurogenomic signatures, and the decomposition of these signatures into sets of genes that are also influenced by time or activity state hints at the modular composition of this complex neurogenomic phenotype.
29

Honey Bee Circadian Clocks: Behavioral Control From Individual Workers to Whole-Colony Rhythms

Moore, D. 15 July 2001 (has links)
In the field of insect circadian rhythms, the honey bee is best known for its foraging time-sense, or Zeitgedächtnis, which permits the forager bee to make precise associations between the presence of food and the time of day. A number of studies, now considered classics, established that bees could be trained to collect food at virtually any time of the circadian cycle and that this timekeeping ability was controlled by an endogenous circadian clock. Recently, behavioral rhythms in bees have been examined using a variety of approaches, in both laboratory and field studies. The following areas of new research are reviewed: (a) the ontogeny of behavioral rhythmicity in newly emerged worker bees; (b) the integration of behavioral rhythmicity with the colony's division of labor; (c) the evidence for social entrainment of behavioral rhythms and for a 'clock of the colony'; (d) the potential linkage between circadian rhythms of general locomotor activity and the foraging time-sense; (e) learning and entrainment hypotheses proposed to explain the mechanism underlying the time-sense; (f) the interplay between extinction and persistence of the time-memory as revealed from the differential behavior of individuals within the foraging group; and (g) comparisons of the Zeitgedächtnis with food-anticipatory rhythms in other animals.
30

HONEY BEE (APIS MELLIFERA) EXPOSURE TO NEONICOTINOID INSECTICIDES: ANALYTICAL METHOD VALIDATION, FIELD SURVEYS, AND SUBLETHAL EFFECTS ON THEIR BEHAVIOR AND RESPIRATION

Gooley, Zuyi Chen 01 December 2021 (has links)
Neonicotinoids are primarily used in agriculture where they are applied as seed coatings, foliar sprays, and soil drenches or through drip irrigation. In urban areas neonicotinoids are used in home garden products and tree treatments. The maximum foraging ranges of honey bees are usually 10 – 15 km (median distances are 1 – 6 km) from the hive. Hence bee exposure to neonicotinoids is dependent upon the land use type within limited foraging distances from the hive. However, there are virtually no data showing levels of neonicotinoid use in urban areas and few studies have been done to compare urban and agricultural exposure. Several neonicotinoids have shown various toxic effects on pollinators and particularly honey bees. Honey bees have a limited arsenal of detoxification proteins to withstand neonicotinoid exposure, which makes them more sensitive and less able to develop tolerance to these insecticides compared to other insects. Sublethal exposure of honey bees to neonicotinoids can cause behavioral disturbances, orientation difficulties, impairment of social activities, and respiratory pattern changes. These behavioral changes can cause insufficient foraging behavior in honey bees due to the sublethal effect of neonicotinoids, thus putting the colony at risk of food shortage and eventually collapse. My objectives were to (1) develop a highly sensitive and selective, multi-residual analytical method for neonicotinoids in honey bee and pollen samples, (2) investigate the impacts of land use type (agriculture vs. urban) on the exposure of honey bees to neonicotinoid, (3) investigate the sublethal effect of imidacloprid on honey bees’ behavioral performance, and (4) investigate the sublethal effect of field-realistic concentrations of imidacloprid on honey bees’ metabolism at different ambient temperatures.To address my first objective (Chapter 2), I tested three sample cleanup methods (silica SPE, NH2-silica SPE, and Z-Sep SPE) based on solid phase extraction (SPE), which were investigated for determination of neonicotinoid insecticides and selected metabolites in honey bee and pollen samples by LC-MS/MS. Samples were extracted by hexane and ethyl acetate and then cleaned up with a SPE cartridge packed with silica gel, which showed a better cleanup efficiency compared to the aminopropyl silica SPE and zirconium-based sorbents method. Matrix effects of the three cleanup methods were evaluated and compared. Silica gel showed the highest analyte recoveries and method detection limit for this method were 2.0 to 9.1 μg/kg for honey bees and 2.4 to 4.7 μg/kg for pollen. Recovery studies were performed at three spiking levels (10, 60, and 120 μg/kg) and ranged from 78 to 140% with RSDs between 3 to 18% in honey bees and 83 to 124% with RSDs between 3 to 17% in pollen. The silica gel SPE cleanup method was then applied using honey bee and pollen samples that were collected from different apiaries. To address my second objective (Chapter 3), I analyzed honey bee and beebread (pollen) samples from apiaries in agricultural, developed, and undeveloped areas that were collected during two years in Virginia to assess if landscape type or county pesticide use were predictive of honey bee colony exposure to neonicotinoid insecticides. Trace concentrations of the neonicotinoid imidacloprid were detected in honey bees (3 out of 84 samples, 2.02 – 3.97 ng/g), while higher levels were detected in beebread (5 out of 84 samples, 4.68 – 11.5 ng/g) and pollen (3 out of 5 pollen trap samples, 7.86 – 12.6 ng/g). Imidacloprid was only detected in samples collected during July and August and were not detected in honey bees from hives where neonicotinoids were detected in pollen or beebread. Number of hives sampled at a site, county pesticide use, and landscape characteristics were not predictive of neonicotinoid detections in honey bees or beebread (all P>0.05). Because of the low detection rates, field surveys may underestimate honey bee exposure to field realistic levels of pesticides or the risk of exposure in different landscapes. Undetectably low levels of exposure or high levels of exposure that go undetected raise questions with regard to potential threats to honey bees and other pollinators. To address my third objective (Chapter 4), I investigated the effects of sub-lethal concentrations of imidacloprid on late fall forager honey bees’ behavior by accessing their activity levels and walking performance after being fed ad libitum with six different concentrations (2 – 125 μg/kg) of imidacloprid-dosed syrup for up to 48 hours in laboratory. Honey bee activity levels and motivation to move after being released into a UV light illuminated tunnel decreased significantly as dosages of neonicotinoid in their diet increased. However, their walking speeds were not significantly affected by imidacloprid. The behavioral changes I observed in honey bees chronically exposed to neonicotinoid via diet could negatively affect individual honey bee performance of their hive duties and consequently, colony survival during late fall and winter. To address my fourth objective (Chapter 5), I measured honey bee (Apis mellifera) foragers’ CO2 production rates at different temperatures (25, 30, or 35°C) after they consumed syrup dosed with a field realistic (5 μg/L) or high (20 μg/L) concentration of a neonicotinoid insecticide (i.e. imidacloprid) for 48h. We found that imidacloprid exposure significantly disrupted honey bees’ non-flight metabolic rates and there was a significant interaction between imidacloprid dosage and ambient temperature. Honey bee foragers dosed with 5 μg/L imidacloprid displayed higher average metabolic rates and those dosed with 20 μg/L imidacloprid displayed similar average metabolic rates compared to the corresponding control group across all temperatures. Exposure to field realistic concentrations of neonicotinoid may have a higher energetic cost for honey bees at 25℃ than at higher ambient temperatures. Disrupted energy costs in honey bees fed imidacloprid might be due to the thermoregulation, nerve excitation, or detoxification processes. Metabolic rate changes caused by pesticide exposure could result in less available energy for honey bees to perform hive duties and forage, which could negatively affect colony health.

Page generated in 0.0647 seconds