1 |
Pattern recognition using a generalised discrete Hopfield networkBrouwer, Roelof K. January 1995 (has links)
No description available.
|
2 |
Hopfield Networks as an Error Correcting Technique for Speech RecognitionBireddy, Chakradhar 05 1900 (has links)
I experimented with Hopfield networks in the context of a voice-based, query-answering system. Hopfield networks are used to store and retrieve patterns. I used this technique to store queries represented as natural language sentences and I evaluated the accuracy of the technique for error correction in a spoken question-answering dialog between a computer and a user. I show that the use of an auto-associative Hopfield network helps make the speech recognition system more fault tolerant. I also looked at the available encoding schemes to convert a natural language sentence into a pattern of zeroes and ones that can be stored in the Hopfield network reliably, and I suggest scalable data representations which allow storing a large number of queries.
|
3 |
Chaos and Learning in Discrete-Time Neural NetworksBanks, Jess M. 27 October 2015 (has links)
No description available.
|
4 |
Memória associativa em redes neurais realimentadas / Associative memory in feedback neural networksCorrêa, Leonardo Garcia 17 June 2004 (has links)
Nessa dissertação, é investigado o armazenamento e a recuperação de padrões de forma biologicamente inspirada no cérebro. Os modelos estudados consistiram de redes neurais realimentadas, que tentam modelar certos aspectos dinâmicos do funcionamento do cérebro. Em particular, atenção especial foi dada às Redes Neurais Celulares, que constituem uma versão localmente acoplada do já clássico modelo de Hopfield. Além da análise de estabilidade das redes consideradas, foi realizado um teste com o intuito de avaliar o desempenho de diversos métodos de construção de memórias endereçáveis por conteúdo (memórias associativas) em Redes Neurais Celulares. / In this dissertation we investigate biologically inspired models of pattern storage and retrieval, by means of feedback neural networks. These networks try to model some of the dynamical aspects of brain functioning. The study concentrated in Cellular Neural Networks, a local coupled version of the classical Hopfield model. The research comprised stability analysis of the referred networks, as well as performance tests of various methods for content-addressable (associative) memory design in Cellular Neural Networks.
|
5 |
Configurable analog hardware for neuromorphic Bayesian inference and least-squares solutionsShapero, Samuel Andre 10 January 2013 (has links)
Sparse approximation is a Bayesian inference program with a wide number of signal processing applications, such as Compressed Sensing recovery used in medical imaging. Previous sparse coding implementations relied on digital algorithms whose power consumption and performance scale poorly with problem size, rendering them unsuitable for portable applications, and a bottleneck in high speed applications. A novel analog architecture, implementing the Locally Competitive Algorithm (LCA), was designed and programmed onto a Field Programmable Analog Arrays (FPAAs), using floating gate transistors to set the analog parameters. A network of 6 coefficients was demonstrated to converge to similar values as a digital sparse approximation algorithm, but with better power and performance scaling. A rate encoded spiking algorithm was then developed, which was shown to converge to similar values as the LCA. A second novel architecture was designed and programmed on an FPAA implementing the spiking version of the LCA with integrate and fire neurons. A network of 18 neurons converged on similar values as a digital sparse approximation algorithm, with even better performance and power efficiency than the non-spiking network. Novel algorithms were created to increase floating gate programming speed by more than two orders of magnitude, and reduce programming error from device mismatch. A new FPAA chip was designed and tested which allowed for rapid interfacing and additional improvements in accuracy. Finally, a neuromorphic chip was designed, containing 400 integrate and fire neurons, and capable of converging on a sparse approximation solution in 10 microseconds, over 1000 times faster than the best digital solution.
|
6 |
Memória associativa em redes neurais realimentadas / Associative memory in feedback neural networksLeonardo Garcia Corrêa 17 June 2004 (has links)
Nessa dissertação, é investigado o armazenamento e a recuperação de padrões de forma biologicamente inspirada no cérebro. Os modelos estudados consistiram de redes neurais realimentadas, que tentam modelar certos aspectos dinâmicos do funcionamento do cérebro. Em particular, atenção especial foi dada às Redes Neurais Celulares, que constituem uma versão localmente acoplada do já clássico modelo de Hopfield. Além da análise de estabilidade das redes consideradas, foi realizado um teste com o intuito de avaliar o desempenho de diversos métodos de construção de memórias endereçáveis por conteúdo (memórias associativas) em Redes Neurais Celulares. / In this dissertation we investigate biologically inspired models of pattern storage and retrieval, by means of feedback neural networks. These networks try to model some of the dynamical aspects of brain functioning. The study concentrated in Cellular Neural Networks, a local coupled version of the classical Hopfield model. The research comprised stability analysis of the referred networks, as well as performance tests of various methods for content-addressable (associative) memory design in Cellular Neural Networks.
|
7 |
AI-WSN: Adaptive and Intelligent Wireless Sensor NetworksLi, Jiakai 24 September 2012 (has links)
No description available.
|
8 |
Default reasoning and neural networksGovender, I. (Irene) 06 1900 (has links)
In this dissertation a formalisation of nonmonotonic reasoning, namely Default logic, is discussed. A proof theory for default logic and a variant of Default logic - Prioritised Default logic - is presented. We also pursue an investigation into the relationship between default reasoning and making inferences in a neural network. The inference problem shifts from the logical problem in Default logic to the optimisation problem in neural networks, in which maximum consistency is aimed at The inference is realised as an adaptation process that identifies and resolves conflicts between existing knowledge about the relevant world and external information. Knowledge and
data are transformed into constraint equations and the nodes in the network represent propositions and constraint equations. The violation of constraints is formulated in terms of an energy function. The Hopfield network is shown to be suitable for modelling optimisation problems and default reasoning. / Computer Science / M.Sc. (Computer Science)
|
9 |
Default reasoning and neural networksGovender, I. (Irene) 06 1900 (has links)
In this dissertation a formalisation of nonmonotonic reasoning, namely Default logic, is discussed. A proof theory for default logic and a variant of Default logic - Prioritised Default logic - is presented. We also pursue an investigation into the relationship between default reasoning and making inferences in a neural network. The inference problem shifts from the logical problem in Default logic to the optimisation problem in neural networks, in which maximum consistency is aimed at The inference is realised as an adaptation process that identifies and resolves conflicts between existing knowledge about the relevant world and external information. Knowledge and
data are transformed into constraint equations and the nodes in the network represent propositions and constraint equations. The violation of constraints is formulated in terms of an energy function. The Hopfield network is shown to be suitable for modelling optimisation problems and default reasoning. / Computer Science / M.Sc. (Computer Science)
|
10 |
Non-binary LDPC coded STF-MIMO-OFDM with an iterative joint receiver structureLouw, Daniel Johannes 20 September 2010 (has links)
The aim of the dissertation was to design a realistic, low-complexity non-binary (NB) low density parity check (LDPC) coded space-time-frequency (STF) coded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with an iterative joint decoder and detector structure at the receiver. The goal of the first part of the dissertation was to compare the performance of different design procedures for NB-LDPC codes on an additive white Gaussian noise (AWGN) channel, taking into account the constraint on the code length. The effect of quantisation on the performance of the code was also analysed. Different methods for choosing the NB elements in the parity check matrix were compared. For the STF coding, a class of universal STF codes was used. These codes use linear pre-coding and a layering approach based on Diophantine numbers to achieve full diversity and a transmission rate (in symbols per channel use per frequency) equal to the number of transmitter antennas. The study of the system considers a comparative performance analysis of di erent ST, SF and STF codes. The simulations of the system were performed on a triply selective block fading channel. Thus, there was selectivity in the fading over time, space and frequency. The effect of quantisation at the receiver on the achievable diversity of linearly pre-coded systems (such as the STF codes used) was mathematically derived and verified with simulations. A sphere decoder (SD) was used as a MIMO detector. The standard method used to create a soft-input soft output (SISO) SD uses a hard-to-soft process and the max-log-map approximation. A new approach was developed which combines a Hopfield network with the SD. This SD-Hopfield detector was connected with the fast Fourier transform belief propagation (FFT-BP) algorithm in an iterative structure. This iterative system was able to achieve the same bit error rate (BER) performance as the original SISO-SD at a reduced complexity. The use of the iterative Hopfield-SD and FFT-BP decoder system also allows performance to be traded off for complexity by varying the number of decoding iterations. The complete system employs a NB-LDPC code concatenated with an STF code at the transmitter with a SISO-SD and FFT-BP decoder connected in an iterative structure at the receiver. The system was analysed in varying channel conditions taking into account the effect of correlation and quantisation. The performance of different SF and STF codes were compared and analysed in the system. An analysis comparing different numbers of FFT-BP and outer iterations was also done. AFRIKAANS : Die doel van die verhandeling was om ’n realistiese, lae-kompleksiteit nie-binˆere (NB) LDPC gekodeerde ruimte-tyd-frekwensie-gekodeerde MIMO-OFDM-sisteem met iteratiewe gesamentlike dekodeerder- en detektorstrukture by die ontvanger te ontwerp. Die eerstem deel van die verhandeling was om die werkverrigting van verskillende ontwerpprosedures vir NB-LDPC kodes op ’n gesommeerde wit Gausruiskanaal te vergelyk met inagneming van die beperking op die lengte van die kode. Verskillende metodes om die nie-bineêre elemente in die pariteitstoetsmatriks te kies, is gebruik. Vir die ruimte-tyd-frekwensiekodering is ’n klas universele ruimte-tyd-frekwensiekodes gebruik. Hierdie kodes gebruik lineêre pre-kodering en ’n laagbenadering gebaseer op Diofantiese syfers om volle diversiteit te bereik en ’n oordragtempo (in simbole per kanaalgebruik per frekwensie) gelyk aan die aantal senderantennes. Die studie van die sisteem oorweeg ’n vergelykende werkverrigtinganalisie van verskillende ruimte-tyd-, ruimte-freksensie- en ruimte-tyd-frekwensiekodes. Die simulasies van die sisteem is gedoen op ’n drievoudig selektiewe blokwegsterwingskanaal. Daar was dus selektiwiteit in die wegsterwing oor tyd, ruimte en frekwensie. Die effek van kwantisering by die ontvanger op die bereikbare diversiteit van lineêr pre-gekodeerde sisteme (soos die ruimte-tyd-frekwensiekodes wat gebruik is) is matematies afgelei en bevestig deur simulasies. ’n Sfeerdekodeerder (SD) is gebruik as ’n MIMO-detektor. Die standaardmetode wat gebuik is om ’n sagte-inset-sagte-uitset (SISO) SD te skep, gebruik ’n harde-na-sagte proses en die maksimum logaritmiese afbeelding-benadering. ’n Nuwe benadering wat ’n Hopfield-netwerk met die SD kombineer, is ontwikkel. Hierdie SD-Hopfield-detektor is verbind met die FFT-BP-algoritme in iteratiewe strukture. Hierdie iteratiewe sisteem was in staat om dieselfde bisfouttempo te bereik as die oorspronklike SISO-SD, met laer kompleksiteit. Die gebruik van die iteratiewe Hopfield-SD en FFT-BP-dekodeerdersisteem maak ook daarvoor voorsiening dat werkverrigting opgeweeg kan word teen kompleksiteit deur die aantal dekodering-iterasies te varieer. Die volledige sisteem maak gebruik van ’n QC-NB-LDPC-kode wat met ’n ruimte-tyd-frekwensiekode by die sender aaneengeskakel is met ’n SISO-SD en FFT-BP-dekodeerder wat in ’n iteratiewe struktuur by die ontvanger gekoppel is. Die sisteem is onder ’n verskeidenheid kanaalkondisies ge-analiseer met inagneming van die effek van korrelasie en kwantisering. Die werkverrigting van verskillende ruimte-frekwensie- en ruimte-tyd-frekwensiekodes is vergelyk en in die sisteem ge-analiseer. ’n Analise om ’n wisselende aantal FFT-BP en buite-iterasies te vergelyk, is ook gedoen. Copyright / Dissertation (MEng)--University of Pretoria, 2010. / Electrical, Electronic and Computer Engineering / unrestricted
|
Page generated in 0.0663 seconds