• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Feeding ecology and behaviour of some adult hoverflies (Diptera:Syrphidae)

Haslett, J. R. January 1982 (has links)
No description available.
2

Resource assessment and utilisation by aphidophagous syrphids, and its implications for integrated pest management

Sutherland, Jamie Phillip January 1998 (has links)
No description available.
3

Examining the Link between Temperature and Flight Phenology in Hoverflies (Diptera: Syrphidae) Using Swedish Citizen Science Data

Magnusson Rundqvist, Malin January 2021 (has links)
Global warming is causing a general trend of rising temperatures worldwide. Simultaneously there is also a decline in populations of pollinators all over the world. Therefore, it is important to examine the effect warming temperatures might have on different pollinator species. The focus of this study was to look at how flight phenology of hoverflies in southern Sweden is affected by rising summer temperatures using two regions differing in temperature, and 11 years of citizen science data on hoverfly observations. Summer temperature and observations of 13 species were used. Although four species had a significantly earlier first flight in years with warmer weather, there were overall no apparent trends toward earlier or longer flight periods due to temperature deviation. However, geographical location had a strong impact on flight behaviour of hoverflies in Sweden with hoverflies in Götaland having an earlier first flight compared to Svealand (located further north). This might be the result of an earlier onset of spring and summer in Götaland than in Svealand. The results of this study indicate that more factors than temperature affect flight phenology in hoverflies.
4

Vybraní opylovači našich luk a jejich didaktické využití / Selected Meadow Pollinators and Their Didactical Use

Huňková, Helena January 2018 (has links)
This Master thesis is focused on selected pollinators of our meadows and their didactic integration into education. The thesis is divided into two parts - theoretical and practical. In theoretical part, there are defined two orders (Hymenoptera and Diptera), process of pollination, plants pollination strategies and pollen grain. Practical part is focused on research of dipterans (particularly on hoverflies) of which purpose was to find out which plants are most pollinated. Subsequent section deals with analysis of secondary school Biology textbooks in terms of representation of selected pollinators. Next section contains plan of practical exercise, which deals with whether honey contains pollen grains. In final section of practical part, a worksheet is presented, which verifies pupil's knowledge about pollinators. KEYWORDS Hymenoptera, Diptera, hoverfly research, pollinators, pollen, textbook analysis
5

Production of alarm pheromone in aphids and perception by ants and natural enemies / Production de phéromone d'alarme chez les pucerons et perception par les fourmis et les ennemis naturels

Verheggen, François 17 December 2008 (has links)
Most Aphidinae species produce and use (E)-ß-farnesene (Eßf) as an alarm pheromone. This sesquiterpene is released by individuals under attack by a predator, and nearby aphids exhibit a variety of alarm behaviours. This PhD thesis aims to better understand how aphids manage their production and emission of alarm pheromone (Chapter IV). We also wanted, in a second step, to improve our knowledge on the roles that Eßf could play in the relationships that aphids have with their predators (Chapter V) and tending ants (Chapter VI), in order to better pinpoint the problem in this very tough context. The aphid predators have indeed a real advantage to be able to use the odorant cues emitted by their prey, to locate them and to select an adequate oviposition site. Ants establish with certain aphid species mutualistic relationships, which occurrence could be facilitated by the use of aphids odours. In Chapter IV, we have highlighted that aphid colonies non subjected to attack by predators release constantly small quantities of Eßf in their headspace, which means that this molecule could have additional roles than just acting as an alarm pheromone. In a second study, we demonstrated that the release of Eßf was not contagious, and therefore that a non stressed aphid receiving the alarm signal does not release additional Eßf. Since the production of alarm pheromone is likely to entail physiological cost, we tested and validated the hypothesis that aphids regulate their Eßf production according to their social environment. In Chapter V, we studied the ability of the hoverfly predator Episyrphus balteatus (Diptera, Syrphidae) to be used as biological control agent against aphids infesting tomato plants (Lycopersicon esculentum). After identifying the odours emitted by aphid infested plants, we have demonstrated that although this Diptera is able to perceive all the odours released by the system, it mainly uses Eßf to select its oviposition site. However, the E. balteatus larvae are not adapted to the architecture of tomato plants. We also showed that the Asian ladybeetle Harmonia axyridis (Coleoptera, Coccinellidae) olfaction was adapted to the perception of Eßf and that this beetle is also attracted by this sesquiterpene. Finally, in Chapter VI, we characterized the benefits accruing to aphid populations that have established mutualistic relationships with Lasius niger (Hymenoptera, Formicidae), and have demonstrated the role of Eßf and honeydew, respectively in locating aphid colonies and in the persistence of the mutualism. La plupart des espèces de pucerons appartenant à la sous-famille des Aphidinae produisent et utilisent le (E)-ß-farnésène (Eßf) comme phéromone dalarme. Ce sesquiterpène est relargué par les individus stressés par lattaque dun prédateur et cause chez les individus qui le perçoivent un comportement dalerte. La présente thèse de doctorat a pour objectif de comprendre comment les pucerons gèrent la production et émission de phéromones dalarme (Chapitre IV). Nous voulions aussi, dans une seconde étape, améliorer les connaissances sur les rôles potentiels que cet Eßf peut jouer au sein des relations que les pucerons entretiennent avec leurs prédateurs (Chapitre V) et avec les fourmis (Chapitre VI) Les prédateurs de pucerons retirent en effet un réel avantage à pouvoir saider des odeurs émises par leurs proies pour les localiser et pour sélectionner un site doviposition adéquat. Les fourmis, quant à elles, établissent des relations de mutualisme avec certaines espèces de pucerons. Les rencontres entre fourmis et pucerons pourraient être facilitées par lutilisation des odeurs de pucerons. Les résultats obtenus peuvent être résumés de la manière suivante: Dans le chapitre IV, nous avons mis en évidence que les colonies de pucerons non soumises à lattaque de prédateurs relarguent constamment de faibles quantités dEßf, ce qui permet dassumer que cette molécule puisse avoir dautres fonctions que celle de phéromone dalarme. Dans une deuxième étude, nous avons démontré que lémission du Eßf nétait pas contagieuse, et donc quun puceron non stressé percevant le signal dalarme német pas à son tour de le Eßf. Puisque la production de phéromone dalarme a inévitablement un coût physiologique, nous avons testé et validé lhypothèse selon laquelle les pucerons régulent leur production de Eßf en fonction de leur environnement social. Dans le chapitre V, nous avons étudié la possibilité dutiliser le syrphe prédateur Episyrphus balteatus (Diptera, Syrphidae) en lutte biologique contre les pucerons infestant les plants de tomate (Lycopersicon esculentum). Après avoir identifié les odeurs émises par les plants infestés, nous avons démontré que, si ce Diptère est capable de percevoir lensemble des odeurs émises par ce système tritrophique, il utilise principalement lEßf pour sélectionner son site doviposition. Cependant, les larves dE. balteatus ne sont pas adaptées à larchitecture des plants de tomate. Nous avons également montré que la coccinelle asiatique Harmonia axyridis (Coleoptera, Coccinellidae) possède le matériel olfactif nécessaire à la perception du Eßf et quelle est aussi attirée par ce sesquiterpène. Enfin, dans le chapitre VI, nous avons caractérisé les bénéfices retirés par les populations de pucerons ayant établi des relations de mutualisme avec Lasius niger (Hymenoptera, Formicidae), et avons démontré le rôle du Eßf et du miellat, respectivement dans la localisation des colonies de pucerons et dans la persistance du mutualisme.
6

The ecology and conservation of endangered saproxylic hoverflies (Diptera, Syrphidae) in Scotland

Rotheray, Ellen L. January 2012 (has links)
Hoverflies are important for their roles in ecological and environmental services, and are also charismatic species of conservation interest in their own right. Almost half of all hoverflies are saprophages, which are organisms that feed on dead or decaying organic matter, and these include saproxylic species that depend on deadwood. Deadwood and its associated community are a rich source of forest biodiversity and are fundamental to forest function, but due to poor management, many saproxylics are threatened or endangered, and techniques for conserving saproxylic species are poorly developed. In this thesis I study the ecology and conservation management of an endangered UK saproxylic fly, the Pine hoverfly, Blera fallax (Linnaeus) (Diptera, Syrphidae) and the dispersal ability of the similarly endangered Aspen hoverfly, Hammerschmidtia ferruginea (Fallén) (Diptera, Syrphidae). My main goals were to clarify methods to support their recovery in active programmes of species conservation in Scotland, UK. For B. fallax, this included experimenting with habitat creation techniques, investigating the best conditions for larval growth and assessing competition effects. In addition, I evaluated the genetic variability of the remaining population in Scotland by comparing it with one in Europe to determine whether genetic constraints may limit recovery. For H. ferruginea, I determined dispersal ability with field experiments involving mark and recapture techniques. By cutting holes at the surface of stumps of Pinus sylvestris, breeding habitat was created artificially for B. fallax at the remaining known locality for this species in the UK. Over 4 years, 81 % of holes were colonized by B. fallax, and by up to six other saproxylic syrphid species. The most successful holes were those cut into the heartwood, seeded with pine chips and sawdust and partially covered, as indicated by a combination of field occupancy monitoring and lab growth experiments. Observations of larval morphology and behaviour within rot holes revealed specializations that largely segregate the species in both time and space, and may mitigate interspecific competition between B. fallax and three more common syrphid species. I further demonstrated that B. fallax has a life history that features facultative semivoltine development, which may be a bet-hedging strategy to cope with fluctuating levels of larval food. Fifty B. fallax larvae were successfully reared and bred in captivity and from these, 430 descendent laboratory reared larvae and adults were released across three relocation sites. After initial success at the first re-location site when a new generation of larvae appeared in holes in 2010, a population crash at all sites occurred in the following year, possibly caused by adverse weather conditions. This disappointing result highlights the vulnerability of small populations to stochastic events, and means that survival of B. fallax may now depend on those larvae that are semivoltine, supplemented by animals currently being reared in captivity. My genetic analyses revealed similarly troubling information that highlights the precarious existence of B. fallax in Scotland: compared with a population in Sweden, Scottish B. fallax had significant less neutral genetic variation, and showed signs of a recent and severe bottleneck that reduced the effective population size to just 12 (CI: 0 - 266) individuals at some point in the last 200 years. Mindful of these challenges, I exploit my new data on the ecology and life history of B. fallax and combine it with techniques for captive rearing and for monitoring the genetic health of B. fallax into specific protocols and general prescriptions for the on-going recovery and management of this species. In order to assess the dispersal ability of H. ferruginea (and therefore its potential for recolonizing newly created habitat), in May to July over two years, adults were marked and released from a central point and subsequently monitored at the breeding site, decaying aspen wood Populus tremula, where adults tend to assemble for mating and oviposition. Adults were resighted visiting logs of decaying aspen set out at 1 km intervals along transects up to 7 km away. Up to 10 % of released individuals were resighted up to 5 km from the central release point. Most dispersing individuals (68 %) were resighted at 1 km, which I propose as the optimal distance for managing aspen for this species. Both of these hoverflies are case studies of techniques for recovering endangered saproxylic flies. Overall, my findings greatly increase fundamental knowledge of the ecology and natural history of these flies, and clarify some of the practical approaches that will be required in their conservation.
7

The role of resource subsidies in enhancing biological control of aphids by hoverflies (Diptera: Syrphidae)

Laubertie, Elsa January 2007 (has links)
In this thesis, experiments were conducted in the laboratory and the field to determine whether the provision of floral resources to hoverflies could enhance the biological control of aphids. The overall aim was to clarify hoverfly behaviour and ecology in an agroecosystem in order to understand the potential of these insects for biocontrol under a conservation biological control (CBC) regime. A preliminary experiment in New Zealand compared the effect of different coloured water-traps on catches of the hoverflies Melanostoma fasciatum (Macquart) and Melangyna novaezelandiae (Macquart). Significantly more individuals were caught in completely yellow traps than in traps with green outer walls and yellow inner walls or in completely green traps. This suggested that if a measure of hoverfly numbers relating to a particular distance along a transect is required, consideration should be given to the ability of hoverflies to detect yellow traps from a distance. The use of traps that are green outside would more accurately reflect the local abundance of hoverflies, as the insect would be likely to see the yellow stimulus only when above or close to the trap. Also, the addition of rose water significantly increased the number of M. fasciatum caught. From a suite of flowering plants chosen for their ability in other studies to increase hoverfly visit frequencies, laboratory experiments were conducted in France to determine the plant’s effectiveness at enhancing Episyrphus balteatus (De Geer) ‘fitness’, and to evaluate whether adult feeding on flowers was related to performance. Phacelia (Phacelia tanacetifolia Bentham cv. Balo), followed by buckwheat (Fagopyrum esculentum Moench cv. Katowase) and coriander (Coriandrum sativum L.) gave the optimal reproductive potential of female E. balteatus. There was no correlation between pollen and nectar consumption, and there was no discernible positive correlation between the quantity of pollen ingested and the resulting female performance. Phacelia and buckwheat were then studied as resource subsidies in the field in New Zealand. The effect of incorporating phacelia or buckwheat in the margins of 5 m x 5 m broccoli plots was tested for hoverfly activity and floral ‘preferences’. Hoverflies which had fed on phacelia and buckwheat pollen were found up to 17.5 m from the floral strips and females of M. fasciatum and M. novaezelandiae consumed more phacelia pollen than that of buckwheat in the field. These results support the choice of phacelia as an ideal floral resource subsidy in crops for enhanced biological control by these New Zealand species. The need for studying hoverfly movement in a large-scale field experiment was apparent from the field studies, so the next experiment was carried out in a field 450 × 270 m and flies were marked via their ingestion of the pollen of phacelia. The focus was on the proportion of flies having consumed the pollen. Although large quantities of pollen were found in some hoverfly guts, most did not contain phacelia pollen and very few were captured at 50 m from phacelia, compared with numbers at the border of the floral strip. A possible explanation was that hoverflies feed on a large variety of pollen species, reducing the relative attraction of phacelia flowers. Another possibility was that hoverflies dispersed from the phacelia away from the crop. Also, pollen digestion rates are likely to be a factor. Finally, a series of experiments was conducted in the field and laboratory to study hoverfly efficacy through oviposition and larval behaviour. In field experiments, female M. fasciatum and M. novaezelandiae laid more eggs where buckwheat patches were larger; however higher oviposition rates did not lead to improved aphid population suppression. In greenhouse experiments, larvae of E. balteatus could initiate a decline in aphid numbers at the predator: prey ratio 1: 8.3, however this control did not persist. Experiments in the laboratory showed that hoverfly larvae became more active and left the system while aphid numbers declined or numbers of larvae increased. This behaviour was caused by two factors: hunger and avoidance of conspecific larvae. Further experiments showed that the avoidance of conspecifics was caused by mutual interference rather than cannibalism. The results of this work highlight the importance of hoverfly dispersal ability. Given the observations of foraging behaviour of females and mutual interference observed between larvae, and the lack of success in CBC by hoverflies in experiments at the crop scale, it is essential to assess the impact of insect predators and parasitoids at a landscape scale.
8

"Foraging and oviposition behaviour in the predatory hoverfly Episyrphus balteatus DeGeer (Diptera:Syrphidae): a multitrophic approach/Le comportement de recherche et de ponte des femelles du syrphe ceinturé, Episyrphus balteatus DeGeer (Diptère, Syrphidae) : approche multitrophique".

Al-Mohamad, Raki 10 September 2010 (has links)
"Summary: The larvae of predatory hoverfly Episyrphus balteatus DeGeer (Diptera: Syrphidae), have limited dispersal ability to forage. The selection of the oviposition site by gravid females is crucial for the survival larvae. Therefore hoverfly females should optimise their foraging behaviour by choosing suitable oviposition sites. The aim of this PhD thesis was to understand how hoverfly females assess aphid patch quality during their egg-laying behaviour. The impact of several factors on the oviposition response of E. balteatus females including host plant, aphid species, aphid colony size, semiochemicals emitted from aphids or their association with host plants, presence of intra- or interspecific competitors and females age, was clearly demonstrated during this research. In the first part, we have shown that E. balteatus females select their oviposition site according to aphid-host plant and aphid species, which is also shown to be related to offspring performance (fitness). Aphid species Myzus persicae (Sulzer) infested-Solanum tuberosum L. was the most preferred aphid-plant combination as an oviposition site by syrphid females. The E. balteatus survival was enhanced in this system and females laid numerous eggs when larvae were reared with M. persicae as prey, especially when the host plant was potato. Broad bean plants Vicia faba infested with Megoura viciae (Buckton) or Acyrthosiphon pisum (Harris) were equally attractive for E. balteatus females. Aphis fabae (Scopoli) was the least preferred aphid. Higher hoverfly fitness was also observed when larvae were reared on M. viciae or A. pisum compared to those reared on A. fabae. Moreover, it was also demonstrated that foraging hoverfly females is guided by different infochemical cues emitted by aphid host plant, such as (E)-β-farnesene, enabling them to locate aphid infested plant and to select an adequate oviposition site. In the second part, the leaf disc system was found to be a practical and efficient method to assess the hoverfly reproductive behaviour under different laboratory conditions. Results also showed that there was a significant quadratic relationship between the released (E)-β-farnesene amounts and aphid colony size, which means that this molecule play important role in oviposition decision made by hoverfly females in response to aphid colony size. In the third part, we have highlighted that the E. balteatus females avoid aphid colonies in which conspecific larvae or their tracks were already present. Similar response was also shown by females to the presence of Harmonia axyridis (Pallas) larval tracks. This oviposition deterring stimulus was also shown to be mediated by odourant cues emitted from larval tracks extracts. It was also demonstrated that the foraging behaviour of hoverfly females was modified by the presence of parasitoids Aphidius ervi (Haliday) in aphid colonies. Females did not exhibit any preference for plants infested with unparasitised or parasitised aphids for 7 days, but they are reluctant to lay eggs in response to the presence of mummies or their exuvia on broad bean plants. Oviposition preference of predatory hoverfly females according to the developmental state of the parasitoid larvae in aphid prey was also found to be related with larval performance. Finally, the age of hoverfly females was found to be an important factor affecting their reproduction ability, suggesting that younger E. balteatus females (2 to 5 weeks old) could be have potential to play a role in biological control of aphids because of their higher reproductive efficiency. All experiments were performed in a laboratory environment and most results obtained are discussed in relation to the context of biological control efforts/Résumé : Les larves du syrphe aphidiphage Episyrphus balteatus (Diptère, Syrphidae) ont une capacité de déplacement limitée. Le choix du site doviposition des femelles est donc crucial pour la survie larvaire. Pour cela, les femelles de ce diptère devraient optimiser leurs choix de sites doviposition pour maximiser les chances de survie de leurs progénitures. Le but de cette thèse de doctorat était de comprendre comment les femelles dE. balteatus évaluent la qualité de patches de pucerons au cours de leur comportement de ponte. La réponse de ponte des femelles dE. balteatus observées à travers plusieurs facteurs a été réalisée, parmi lesquels: la plante hôte, lespèce de pucerons, la taille de la colonie de pucerons, les substances sémiochimiques émises par les pucerons et leurs associations avec leurs plantes hôtes, la présence de compétiteurs intra- ou interspécifiques et l'âge de la femelle. Dans la première partie de ce travail, les résultats obtenus ont permis de mettre en évidence que les femelles dE. balteatus sélectionnent le site de ponte en fonction de la plante hôte et lespèce de puceron, et ce comportement a été aussi montré comme étant lié avec la performance du prédateur (fitness). La combinaison puceron/plante M. persicae/Solanum tuberosum a été la plus préférée par les femelles dE. balteatus, et le fitness de ce prédateur était plus élevé en particulier lorsque les larves sont nourries avec M. persicae élevées sur une plante de pomme de terre. De même, les femelles dE. balteatus ont montré une même préférence pour les deux combinaisons M. viciae/V. faba et A. pisum /V. faba, et un fitness supérieur du prédateur adulte a été aussi observé lorsque les larves sont nourries avec les deux espèces de pucerons. De plus, nous avons aussi montré que les femelles dE. balteatus en recherche de site de ponte sont guidées par des substances volatiles, en particulier le E-(β)-farnésène, émises par les pucerons infestant leur plante hôte. Dans la deuxième partie, le système feuille-disque est démontré comme étant une méthode pratique et efficace pour évaluer le comportement de ponte dE. balteatus au laboratoire sous différentes conditions. Les résultats ont aussi démontré quil y a une relation quadratique entre lémission du E-(β)-farnésène et la taille de colonie de pucerons, ce qui permet de seffectuer que cette molécule a un rôle important dans le comportement de ponte des femelles dE. balteatus en réponse à la taille de la colonie de pucerons. Les résultats obtenus dans la troisième partie, nous ont permis de montrer que les femelles dE. balteatus réduisent leurs pontes dans une colonie de pucerons contenant préalablement des larves de leur propre espèce ou leurs traces. Une réponse similaire a été aussi montrée en présence des substrats préalablement visitées par les larves de coccinelle Harmonia axyridis. Ainsi, la réduction de la ponte des femelles dE. balteatus est provoquée par des substances volatiles émises par les substrats des larves de syrphe. Nous avons aussi démontré que la présence du parasitoïde Aphidius ervi dans une colonie de pucerons a un effet significatif sur le comportement de ponte des femelles dE. balteatus. Les femelles dE. balteatus ne distinguent pas les plants infestées par les pucerons parasités ou non parasités, cependant les femelles réduisent leur pontes en réponse à la présence des pucerons momifiés ou des exuvies de momies. De plus, un fitness supérieur du prédateur a été aussi observé lorsque les larves sont nourries avec lespèce de pucerons A. pisum parasités ou non parasités. Enfin dans la dernière partie, lâge de la femelle dE. balteatus influence significativement leur reproduction, ce qui permet de proposer que les jeunes femelles (2 à 5 semaines) peuvent être plus efficaces dans la lutte biologique contre les pucerons car elles ont une grande efficacité de reproduction. Toutes les expériences ont été effectuées au laboratoire et la plupart des résultats obtenus sont discutés en relation avec le contexte de la lutte biologique".

Page generated in 0.0569 seconds