31 |
Nový chimérický antigenní receptor (CAR) pro terapii infekce lidským cytomegalovirem (HCMV) / New chimeric antigen receptor (CAR) for therapy of human cytomegalovirus (HCMV) infectionKroutilová, Marie January 2018 (has links)
Human cytomegalovirus (HCMV, Herpesviridae) can cause severe complications in the infected individuals undergoing hematopoietic stem cell transplantation. Nowadays, these patients are treated using antivirotics or HCMV-specific T cells derived from the seropositive graft donor. This study explored the possibility of redirecting HCMV-non-specific T cells from a seronegative donor towards HCMV-infected cells via chimeric antigen receptor (CAR), i.e. artificially designed T cell receptor. Viral glycoprotein B (gB) has been selected as a target for this receptor. Published sequence of a single chain variable fragment of a human antibody was used for the design of the CAR against gB (gBCAR). After the verification of production and surface localization in cell lines, gBCAR was being introduced into human T cells via lentiviral vectors. Human fetal lung fibroblasts (LEP) infected with HCMV were used as target cells after the expression of gB at their surface was demonstrated. gBCAR functionality was evaluated by the incubation of modified T cells with infected cells and subsequent analysis of media for IFNγ concentration, which was significantly higher in the setting of gBCAR T cells incubated with HCMV-LEP than in the control incubations. The results obtained show the specificity of gBCAR against...
|
32 |
Die Rolle des Proteasoms für die Replikation des humanen CytomegalievirusKaspari, Marion 15 September 2009 (has links)
Das Humane Cytomegalievirus (HCMV) ist ein ubiquitäres Pathogen, welches den Metabolismus der Wirtszelle auf vielfältige Weise manipuliert, um seine eigene Vermehrung zu begünstigen. In der vorliegenden Arbeit konnte nachgewiesen werden, dass auch das Ubiquitin-Proteasom-System in die HCMV-Replikation involviert ist. So konnte zunächst gezeigt werden, dass die Chymotrypsin-ähnliche (CT-L) Aktivität des konstitutiven Proteasoms in HCMV-infizierten Zellen signifikant erhöht ist. Wurde die CT-L Proteasomaktivität durch Proteasominhibitoren (PI) blockiert, so hatte dies die Hemmung der HCMV-Replikation zur Folge. Die Charakterisierung des Einflusses von PI auf die virale Proteinexpression ergab, dass bei niedriger MOI (MOI 0.1) deutlich verringerte Mengen der sehr frühen Proteine vorlagen, dieser Effekt jedoch bei hoher MOI (ab MOI 1) aufgehoben war. Die Expression früher Proteine war MOI-unabhängig reduziert. Hingegen war die Expression der späten Proteine MOI-unabhängig vollständig unterdrückt. Studien mit dem Nukleosidanalogon BrdU ergaben zudem, dass die de novo Synthese viraler DNA blockiert war. Um erste Hinweise auf den Wirkungsmechanismus von PI zu erhalten, wurde untersucht, ob der Transkriptionsfaktor NF-kappaB oder zelluläre Transkriptionsrepressoren wie z.B. hDaxx am anti-HCMV-Effekt beteiligt sind. Durch die Charakterisierung einer Virusmutante mit Deletion der NF-kappaB-Bindestellen im MIE-Enhancer/Promotor konnte gezeigt werden, dass der antivirale Effekt von PI nicht auf der Hemmung der Aktivierung von NF-kappaB beruht. Experimente mit hDaxx-knockdown Zellen ergaben hingegen, dass die Stabilisierung des Transkriptionsrepressors hDaxx partiell zum anti-HCMV-Effekt von PI beiträgt. Darüber hinaus müssen jedoch weitere virale oder zelluläre Zielproteine existieren, deren Beeinflussung durch PI kritisch für die Virusreplikation ist. Zusammenfassend stellt das Proteasom somit einen neu identifizierten potentiellen Angriffspunkt für die anti-HCMV-Therapie dar. / The Human Cytomegalovirus (HCMV) is a ubiquitous pathogen that manipulates many aspects of the host cell metabolism to enhance viral replication. This work demonstrates that the ubiquitin-proteasome system is also involved in HCMV replication. First of all, the chymotrypsin-like (CT-L) activity of the constitutive proteasome was significantly increased in HCMV infected cells. In the presence of proteasome inhibitors (PI) viral replication was efficiently blocked. Characterisation of the influence of PI on viral protein expression showed that immediate early protein expression was clearly reduced at low MOI (MOI 0.1); however, this effect was abolished at high MOI (starting from MOI 1). Expression of early proteins was significantly decreased independently of the MOI used for infection. In contrast, late protein expression was completely suppressed at both low and high MOI. Additionally, studies using the nucleoside analogue BrdU showed that PI block the de novo synthesis of viral DNA. In order to gain insight into the working mechanism of PI the involvement of the transcription factor NF-kappaB and cellular repressors of transcription (e.g. hDaxx) in the antiviral effect of PI was examined. Studies using a mutant virus carrying deletions of the NF-kappaB binding sites in the MIE-enhancer/promoter revealed that the anti-HCMV effect of PI is not due to inhibition of NF-kappaB activation. Analyses using hDaxx-knockdown cells showed that stabilisation of the transcriptional repressor hDaxx partially contributes to the antiviral effect of PI. However, the existence of additional viral or cellular target proteins of PI is very likely. In summary, the proteasome thus represents a newly identified and promising target for anti-HCMV therapy.
|
33 |
Struktur-Funktionsanalyse des Immediate-Early Proteins 2 (IE2) des humanen ZytomegalievirusAsmar, Jasmin 17 January 2005 (has links)
Das Immediate-Early Protein 2 (IE2) des humanen Zytomegalievirus ist ein essentieller Regulationsfaktor des lytischen Infektionszyklus. Es aktiviert verschiedene early Promotoren, autoreprimiert seine eigene Expression und besitzt darüber hinaus auch zellzyklusregulatorische Aktivitäten. Um einzelne Funktionen des IE2 Proteins gezielt analysieren zu können, ist eine genaue Kenntnis seiner regulatorischen Domänen unabdingbar. Im Rahmen dieser Arbeit wurde daher eine Struktur-Funktionsanalyse des IE2 Proteins durchgeführt mit dem Ziel, seine funktionellen Domänen genauer zu charakterisieren. Hierfür wurden verschiedene IE2-Mutanten hergestellt und ihre Aktivität im Hinblick auf Transaktivierung, Autorepression und DNA-Bindung sowie Zellzylusarrestinduktion bestimmt. Die Untersuchungen ergaben, dass innerhalb einer Core-Region im C-Terminus des Proteins (AS 450-544) die regulatorischen Domänen der untersuchten Funktionen überlappen und hier schon kleinere Mutationen zu einem Funktionsverlust führen. Im Gegensatz dazu ist der Bereich N-terminal des Core deutlich weniger sensitiv gegenüber Mutationen. Hier konnten Sequenzen identifiziert werden, die spezifisch für einzelne Funktionen wie die Transaktivierung oder die Zellzyklusarrestinduktion erforderlich sind. Darüber hinaus hat sich gezeigt, dass eine im bisherigen Verständnis essentielle putative Zinkfingerdomäne außerhalb des Core liegt und für die Funktionalität des Proteins, vor allem für seine DNA-Bindung, nicht benötigt wird. Somit ist der Bereich, in dem die regulatorischen Domänen der untersuchten Funktionen überlappen, deutlich kleiner, als bisher angenommen. Vor diesem Hintergrund lässt sich eine Strategie für die Erstellung von diskriminierenden Virusmutanten ableiten, bei der Einzelfunktionen von IE2 im Viruskontext eliminiert und somit im Sinne ihrer physiologischen Relevanz analysierbar werden. / The Immediate Early Protein 2 (IE2) of human cytomegalovirus is an essential regulatory factor of the viral replicative cycle. It fulfills several functions including transactivation, negative autoregulation and cell cycle regulation. In order to analyse the physiological significance of each of the IE2 functions a precise knowledge of the regulatory protein domains is needed. Therefore, a structure-function analysis of the IE2 protein was performed in this work. Different sets of IE2 mutants were tested in parallel with regard to transactivation, DNA-binding, autoregulation and cell cycle regulation. We found the IE2 protein to contain an unexpectedly clear-cut core domain (amino acids (aa) 450-544) that is defined by its absolute sensitivity to any kind of mutation. In contrast, the region adjacent to the core (aa 290-449) generally displays greater tolerance towards mutations. Although specific sequences correlate with distinct IE2 activities none of the mutations analysed completely abolished any particular function. The core is separated from the adjacent region by the putative zinc finger (428-452) which was found to be entirely dispensable for any function tested. Our work supports the view that the 100 amino acids of the core domain hold the key to most functions of IE2. A systematic, high-density mutational analysis of this region may identify informative mutants which discriminate between various IE2 functions. Such mutants could then be tested in a viral background.
|
34 |
Investigating the role of human cytomegalovirus protein LUNA in regulating viral gene expression during latencyLau, Jonathan January 2018 (has links)
Human cytomegalovirus (HCMV) is a widespread human herpesvirus pathogen and prototypical member of the β-herpesvirus subfamily. Like all herpesviruses, the virus establishes a lifelong latent infection following host exposure, which has the potential to reactivate periodically and contribute to recurrent disease processes. In individuals with weak or compromised immune systems, such reactivation can lead to profound pathology. Understanding how latent infections are maintained is important for uncovering how HCMV causes disease. The study of viral genes that are expressed during latent infection grants insight into how latency is regulated and how it could be therapeutically targeted. To that end, this project has sought to evaluate the functional significance of one such viral gene termed LUNA in the context of latency. In models of experimental latent infection based on primary myeloid cells, levels of viral gene transcription were found to be significantly reduced following infection with LUNA deletion mutant viruses, consistent with corresponding observable changes in post-translational histone modifications over the viral promoters of latency-associated genes. Additionally, using luciferase reporter systems, latency-associated viral gene promoters became activated in response to the expression of wild-type LUNA. Together, these findings argue for a role of LUNA in regulating viral gene expression during latent HCMV infection. One possible mechanism by which LUNA may fulfil its role is by targeting cellular ND10 structures, known intrinsic inhibitors of herpesvirus gene expression, for disruption. In support of this, latently infected cells were found to be devoid of ND10, a phenotype that was recapitulated by the direct expression of wild-type LUNA. Furthermore, mutation studies confirmed the identification of a novel deSUMOylase activity encoded by LUNA that was responsible for mediating ND10 disruption. Use of a catalytically inactive LUNA mutant in transcriptional analyses of latent infection also generated similar results as with the LUNA deletion viruses. Overall, these data support the hypothesis that LUNA serves as an important regulator of viral gene expression during latency, which is likely linked to its ability to target ND10 structures for disruption, thus raising the possibility that inhibition of deSUMOylation may serve as a novel therapeutic strategy to target latent HCMV infection.
|
35 |
Regulation des Zellzyklus durch das Maus- und Ratten-ZytomegalievirusNeuwirth, Anke 29 November 2005 (has links)
Das humane Zytomegalievirus, ist ein ubiquitäres Pathogen, welches akute und persistierende Infektionen verursacht. Bei immunsupprimierten Patienten kann das Virus zu schweren Erkrankungen, wie Hepatitis, Pneumonie und bei kongenitaler Infektion außerdem zu Schädigungen des ZNS führen. HCMV blockiert die Zellproliferation durch einen Arrest am G1/S-Übergang des Zellzyklus, andererseits wird aber gleichzeitig die Expression S-Phase spezifischer Gene aktiviert. Teilweise lässt sich dies durch eine Virus vermittelte spezifische Inhibition der zellulären DNA-Repliaktion sowie durch eine massive Deregulation Zyklin-assozzierter Kinasen erklären. Zellkulturexperimente deuten darauf hin, dass die Zellzyklusalterationen wichtige Voraussetzungen für eine erfolgreiche Virusreplikation darstellen. Es ist hingegen nicht bekannt, welche Relevanz sie für die Virusvermehrung in vivo und das pathologische Erscheinungsbild im erkrankten Organismus besitzen. Diese Frage kann nur in einem Tiermodell sinnvoll angegangen werden. Aufgrund der Wirtsspezifität der Zytomegalieviren, ist man dabei auf die Verwendung der jeweiligen artspezifischen CMV angewiesen. Murines CMV (MCMV) und Ratten-CMV (RCMV) sind dabei die bislang bestuntersuchtesten Systeme. Das Anliegen dieser Arbeit war es zu prüfen, inwieweit die für HCMV beschriebenen Zellzyklusregulationen in MCMV und RCMV auf Zellkulturbasis konserviert sind. Es konnte gezeigt werden, dass sowohl RCMV als auch MCMV einen antiproliferativen Effekt auf infizierte Zellen besitzen und ebenso wie HCMV zu einem Zellzyklusarrest führen. Nager-Zytomegalieviren können Zellen auch in der G2-Phase arretieren und in dieser Zellzyklusphase auch effizient replizieren können. Die Infektion mit Nager-CMV führt außerdem auf breiter Basis zur Veränderung Zyklin-assoziierter Kinaseaktivitäten. Allen Zytomegalieviren ist die Hemmung der zellulären DNA-Synthese am G1/S-Übergang durch die Inhibition des replication licensing, dem Beginn der DNA-Synthese gemein. Durch diese vergleichende Studie wird einerseits deutlich, dass wesentliche funktionelle Schritte der Zellzyklusregulation zwischen den Zytomegalieviren konserviert sind, aber andererseits die zu Grunde liegenden molekularen Mechanismen zum Teil deutlich variieren. / Human Cytomegalovirus (HCMV) is an ubiquitous, species-specific beta-herpesvirus that, like other herpesviruses, can establish lifelong latency following primary infection. HCMV infection becomes virulent only in immunocompromised patients such as premature infants, transplant recipients and AIDS patients where the virus causes severe disease like hepatitis, pneumonitis and retinitis. Congenital infection produces birth defects, most commonly hearing loss. To develop rational-based strategies for prevention and treatment of HCMV infection, it is crucial to understand the interactions between the virus and its host cell that support the establishment and progression of the virus replicative cycle. In general, herpesviruses are known to replicate most efficiently in the absence of cellular DNA synthesis. What is more, they have evolved mechanisms to avoid the cell´s DNA replication phase by blocking cell cycle progression outside S phase. HCMV has been shown to specifically inhibit the onset of cellular DNA synthesis resulting in cells arrested with a G1 DNA content. Towards a better understanding of CMV-mediated cell cycle alterations in vivo, we tested murine and rat CMV (MCMV/RCMV), being common animal models for CMV infection, for their influence on the host cell cycle. It was found that both MCMV and RCMV exhibit a strong anti-proliferative capacity on immortalised and primary embryonic fibroblasts after lytic infection. This results from specific cell cycle blocks in G1 and G2 as demonstrated by flow cytometry analysis. The G1 arrest is at least in part caused by a specific inhibition of cellular DNA synthesis and involves both the formation and activation of the cells’ DNA replication machinery. Interestingly, and in contrast to HCMV, the replicative cycle of rodent CMVs started from G2 as efficiently as from G1. Whilst the cell cycle arrest is accompanied by a broad induction of cyclin-cdk2 and cyclin-cdk1 activity, cyclin D1-cdk4/6 activity is selectively suppressed in MCMV and RCMV infected cells. Thus, given that both rodent and human CMVs are anti-proliferative and arrest cell cycle progression we found a surprising divergence of some of the underlying mechanisms. Therefore, any question put forward to a rodent CMV model involving cell cycle regulation has to be well defined in order to extrapolate meaningful information for the human system.
|
Page generated in 0.0704 seconds