• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 14
  • 14
  • 10
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A modular multi-agent framework for innovation diffusion in changing business environments: conceptualization, formalization and implementation

Johanning, Simon, Scheller, Fabian, Abitz, Daniel, Wehner, Claudius, Bruckner, Thomas 11 February 2022 (has links)
Understanding how innovations are accepted in a dynamic and complex market environment is a crucial factor for competitive advantage. To understand the relevant factors for this diffusion and to predict success, empirically grounded agent-based models have become increasingly popular in recent years. Despite the popularity of these innovation diffusion models, no common framework that integrates their diversity exists. This article presents a flexible, modular and extensible common description and implementation framework that allows to depict the large variety of model components found in existing models. The framework aims to provide a theoretically grounded description and implementation framework for empirically grounded agent-based models of innovation diffusion. It identifies 30 component requirements to conceptualize an integrated formal framework description. Based on this formal description, a java-based implementation allowing for flexible configuration of existing and future models of innovation diffusion is developed. As a variable decision support tool in decision-making processes on the adoption of innovations the framework is valuable for the investigation of a range of research questions on innovation diffusion, business model evaluation and infrastructure transformation.
12

Assessing Working Models' Impact on Land Cover Dynamics through Multi-Agent Based Modeling and Artificial Neural Networks:  A Case Study of Roanoke, VA

Nusair, Heba Zaid 30 May 2024 (has links)
The transition towards flexible work arrangements, notably work-from-home (WFH) practices, has prompted significant discourse on their potential to reshape urban landscapes. While existing urban growth models (UGM) offer insights into environmental and economic impacts, There is a need to study the urban phenomena from the bottom-up style, considering the essential influence of individuals' behavior and decision-making process at disaggregate and local levels (Brail, 2008, p. 89). Addressing this gap, this study aims to comprehensively understand how evolving work modalities influence the urban form and land use patterns by focusing on socioeconomic and environmental factors. This research employs an Agent-Based Model (ABM) and Artificial Neural Network (ANN), integrated with GIS technologies, to predict the future Land Use and Land Cover (LULC) changes within Roanoke, Virginia. The study uniquely explores the dynamic interplay between macro-level policies and micro-level individual behaviors—categorized by employment types, social activities, and residential choices—shedding light on their collective impact on urban morphology. Contrary to conventional expectations, findings reveal that the current low rate in WFH practices has not significantly redirected urban development trends towards sprawl but rather has emphasized urban densification, largely influenced by on-site work modalities. This observation is corroborated by WFH ratios not exceeding 10% in any analyzed census tract. Regarding model performance, the integration of micro-agents into the model substantially improved its accuracy from 86% to 89.78%, enabling a systematic analysis of residential preferences between WFH and on-site working (WrOS) agents. Furthermore, logistic regression analysis and decision score maps delineate the distinct spatial preferences of these agent groups, highlighting a pronounced suburban and rural preference among WFH agents, in contrast to the urban-centric inclination of WrOS agents. Utilizing ABM and ANN integrated with GIS technologies, this research advances the precision and complexity of urban growth predictions. The findings contribute valuable insights for urban planners and policymakers and underline the intricate relationships between work modalities and urban structure, challenging existing paradigms and setting a precedent for future urban planning methodologies. / Doctor of Philosophy / As more people start working from home, cities might change unexpectedly. This study in Roanoke, Virginia, explores how work-from-home (WFH) practices affect urban development. Traditional city growth models look at big-picture trends, but this study dives into the details of workers' individual behaviors and their residential choices. Using advanced computer models such as machine learning and geographic information systems (GIS), predictions are made on how different work arrangements influence where workers live and how cities expand. Surprisingly, fewer people work from home than expected. This hasn't caused cities to spread out more. Instead, Roanoke is expected to become denser in the next ten years because on-site workers tend to live in urban centers, while those who work from home prefer suburban and rural areas and, sometimes, urban. Different work arrangements lead to distinct residential preferences. By including the workers' individual behaviors in the models, the model's accuracy increased from 86% to 89.78%. Logistic regression analysis highlights the factors influencing land use changes, such as proximity to roads, slopes, home values, and wages. This research helps city planners and policymakers understand working arrangement trends and create better policies to manage urban development. It shows the complex relationship between work practices and city structures, providing valuable insights for future city planning.
13

Social-ecological modeling for policy analysis in transformative land systems - Supporting evaluation and communication for sustainability

Schulze, Jule 16 November 2016 (has links)
The increasing demand for food and fiber, the need for climate change mitigation and adaptation as well as for environmental protection impose severe challenges on land systems worldwide. Solutions to support the transformation towards a sustainable development of land systems are needed. One response to the multiple challenges is the introduction of policy options aimed at steering land use activities towards a bundle of societal goals. However, it is difficult to empirically foresee the effectiveness and unintended consequences of policy options prior to their deployment. A second response is environmental education because human consumption behavior, among other factors, strongly influences natural ecosystems. However, it is a non-trivial task to develop effective communication strategies for complex topics such as sustainable land management. In both cases, modeling can help to overcome the different obstacles along the way. In this thesis, dynamic process-based social-ecological models at the individual scale are developed and analyzed to study effectiveness and unintended side effects of policy options, which promote agricultural management strategies and were intentionally designed to cope with multiple societal challenges. Two case studies of political intervention are investigated: the promotion of perennial woody crops in European agricultural landscapes for a sustainable bioeconomy and governmental supplementary feeding programs to cope with climate risks in pastoral systems in drylands. These two case studies are complemented by the development of a serious online game on sustainable land management in general that bridges the gap between land use modeling and environmental education. Simulation results of this thesis provide insights into (i) the performance of the politically promoted agricultural management strategies in meeting various intended goals such as poverty alleviation or the maintenance of biodiversity and ecosystem services, (ii) the emergence of unintended (environmental and social) side effects such as land use conflicts, land degradation or cost explosion and (iii) the mitigation of such side effects by appropriately adjusting the design of the policy options. These insights are enabled by representing temporal as well as spatial variability in the developed models. Furthermore, different mechanistic approaches of transferability analyses based on stylized landscapes are developed and applied. They enable to check whether and in what respect policy impacts actually differ substantially between regional contexts, to identify what regional factors steer the impact and to derive indicators for grouping regions of similar policy impacts. Finally, based on a conducted survey-based evaluation and experiences from various applications, the value of the developed serious game for environmental education is revealed and discussed.Altogether, this thesis contributes to model-based decision support for steering transformation towards the sustainable development of land systems in an appropriate way. This is done by developing appropriate social-ecological modeling approaches, by performing specific policy impact analyses in two transformative agricultural systems using these models and by providing a model-based communication tool for environmental education.
14

Complexity-aware Decision-making with Applications to Large-scale and Human-in-the-loop Systems

Stefansson, Elis January 2023 (has links)
This thesis considers control systems governed by autonomous decision-makers and humans. We formalise and compute low-complex control policies with applications to large-scale systems, and propose human interaction models for controllers to compute interaction-aware decisions. In the first part of the thesis, we consider complexity-aware decision-making, formalising the complexity of control policies and constructing algorithms that compute low-complexity control policies. More precisely, first, we consider large-scale control systems given by hierarchical finite state machines (HFSMs) and present a planning algorithm for such systems that exploits the hierarchy to compute optimal policies efficiently. The algorithm can also handle changes in the system with ease. We prove these properties and conduct simulations on HFSMs with up to 2 million states, including a robot application, where our algorithm outperforms both Dijkstra's algorithm and Contraction Hierarchies.  Second, we present a planning objective for control systems modelled as finite state machines yielding an explicit trade-off between a policy's performance and complexity. We consider Kolmogorov complexity since it captures the ultimate compression of an object on a universal Turing machine. We prove that this trade-off is hard to optimise in the sense that dynamic programming is infeasible. Nonetheless, we present two heuristic algorithms obtaining low-complexity policies and evaluate the algorithms on a simple navigation task for a mobile robot, where we obtain low-complexity policies that concur with intuition.  In the second part of the thesis, we consider human-in-the-loop systems and predict human decision-making in such systems. First, we look at how the interaction between a robot and a human in a control system can be predicted using game theory, focusing on an autonomous truck platoon interacting with a human-driven car. The interaction is modelled as a hierarchical dynamic game, where the hierarchical decomposition is temporal with a high-fidelity tactical horizon predicting immediate interactions and a low-fidelity strategic horizon estimating long-term behaviour. The game enables feasible computations validated through simulations yielding situation-aware behaviour with natural and safe interactions.  Second, we seek models to explain human decision-making, focusing on driver overtaking scenarios. The overtaking problem is formalised as a decision problem with perceptual uncertainty. We propose and numerically analyse risk-agnostic and risk-aware decision models, judging if an overtaking is desirable. We show how a driver's decision time and confidence level can be characterised through two model parameters, which collectively represent human risk-taking behaviour. We detail an experimental testbed for evaluating the decision-making process in the overtaking scenario and present some preliminary experimental results from two human drivers. / Denna avhandling studerar styrsystem med autonoma beslutsfattare och människor. Vi formaliserar och beräknar styrlagar av låg komplexitet med tillämpningar på storskaliga system samt föreslår modeller för mänsklig interaktion som kan användas av regulatorer för att beräkna interaktionsmedvetna beslut. I den första delen av denna avhandling studerar vi komplexitet-medveten beslutsfattning, där vi formaliserar styrlagars komplexitet samt konstruerar algoritmer som beräknar styrlagar med låg komplexitet. Mer precist, först studerar vi storskaliga system givna av hierarkiska finita tillståndsmaskiner (HFSMs) och presenterar en planeringsalgoritm för sådana system som utnyttjar hierarkin för att beräkna optimala styrlagar effektivt. Algoritmen kan också lätt hantera förändringar i systemet. Vi bevisar dessa egenskaper och utför simuleringar på HFSMs med upp till 2 miljoner tillstånd, inklusive en robot-applikation, där vår algorithm överträffar både Dijkstra's algoritm och så kallade Contraction Hierarchies. För det andra så presenterar vi ett planeringsobjektiv för finita tillståndsmaskiner som ger en explicit avvägning mellan ett styrlags prestanda och komplexitet. Vi använder Kolmogorovkomplexitet då den fångar den ultimata komprimeringen av ett objekt i en universell Turing-maskin. Vi bevisar att detta objektiv är icke-trivial att optimera över i avseendet att dynamisk programming är omöjligt att utföra. Vi presenterar två algoritmer som beräknar styrlagar med låg komplexitet och evaluerar våra algoritmer på ett enkelt navigationsproblem där vi erhåller styrlagar av låg komplexitet som instämmer med intuition. I den andra delen av denna avhandling behandlar vi reglersystem där en människa interagerar med systemet och studerar hur mänskligt beslutsfattande i sådana system kan förutspås. Först studerar vi hur interaktionen mellan en maskin och en människa i ett reglersystem can förutspås med hjälp av spelteori, med fokus på en självkörande lastbilskonvoj som interagerar med en mänskligt styrd bil. Interaktionen är modellerad som ett hierarkiskt dynamiskt spel, där den hierarkiska indelningen är tidsmässig med en högupplöst taktil horisont som förutspår omedelbara interaktioner samt en lågupplöst strategisk horisont som estimerar långtgående interaktioner. Indelning möjliggör beräkningar som vi validerar via simuleringar där vi får situations-medvetet beteende med naturliga och säkra interaktioner. För det andra söker vi en model med få parametrar som förklarar mänskligt beteende där vi fokuserar på omkörningar. Vi formaliserar omkörningsproblemet som ett beslutfattningsproblem med perceptuell osäkerhet. Vi presenterar och analyserar numeriskt risk-agnostiska och risk-medvetna beslutsmodeller som avväger om en omkörning är önskvärd. Vi visar hur en förares beslutstid och konfidensnivå kan karakteriserar via två modellparametrar som tillsammans representerar mänskligt risk-beteende. Vi beskriver en experimentell testbädd och presentar preliminära resultat från två mänskliga förare. / <p>QC 20230523</p>

Page generated in 0.0646 seconds