Spelling suggestions: "subject:"humano robotics""
11 |
Optimisation semi-infinie sur GPU pour le contrôle corps-complet de robots / GPU-based Semi-Infinite Optimization for Whole-Body Robot ControlChrétien, Benjamin 08 July 2016 (has links)
Un robot humanoïde est un système complexe doté de nombreux degrés de liberté, et dont le comportement est sujet aux équations non linéaires du mouvement. Par conséquent, la planification de mouvement pour un tel système est une tâche difficile d'un point de vue calculatoire. Dans ce mémoire, nous avons pour objectif de développer une méthode permettant d'utiliser la puissance de calcul des GPUs dans le contexte de la planification de mouvement corps-complet basée sur de l'optimisation. Nous montrons dans un premier temps les propriétés du problème d'optimisation, et des pistes d'étude pour la parallélisation de ce dernier. Ensuite, nous présentons notre approche du calcul de la dynamique, adaptée aux architectures de calcul parallèle. Cela nous permet de proposer une implémentation de notre problème de planification de mouvement sur GPU: contraintes et gradients sont calculés en parallèle, tandis que la résolution du problème même se déroule sur le CPU. Nous proposons en outre une nouvelle paramétrisation des forces de contact adaptée à notre problème d'optimisation. Enfin, nous étudions l'extension de notre travail au contrôle prédictif. / A humanoid robot is a complex system with numerous degrees of freedom, whose behavior is subject to the nonlinear equations of motion. As a result, planning its motion is a difficult task from a computational perspective.In this thesis, we aim at developing a method that can leverage the computing power of GPUs in the context of optimization-based whole-body motion planning. We first exhibit the properties of the optimization problem, and show that several avenues can be exploited in the context of parallel computing. Then, we present our approach of the dynamics computation, suitable for highly-parallel processing architectures. Next, we propose a many-core GPU implementation of the motion planning problem. Our approach computes the constraints and their gradients in parallel, and feeds the result to a nonlinear optimization solver running on the CPU. Because each constraint and its gradient can be evaluated independently for each time interval, we end up with a highly parallelizable problem that can take advantage of GPUs. We also propose a new parametrization of contact forces adapted to our optimization problem. Finally, we investigate the extension of our work to model predictive control.
|
12 |
Motor interference and behaviour adaptation in human-humanoid interactionsShen, Qiming January 2013 (has links)
This thesis proposes and experimentally demonstrates an approach enabling a humanoid robot to adapt its behaviour to match a human’s behaviour in real-time human-humanoid interaction. The approach uses the information distance synchrony detection method, which is a novel method to measure the behaviour synchrony between two agents, as the core part of the behaviour adaptation mechanism to guide the humanoid robot to change its behaviour in the interaction. The feedback of the participants indicated that the application of this behaviour adaptation mechanism could facilitate human-humanoid interaction. The investigation of motor interference, which may be adopted as a possible metric to quantify the social competence of a robot, is also presented in this thesis. The results from two experiments indicated that both human participants’ beliefs about the engagement of the robot and the usage of rhythmic music might affect the elicitation of the motor interference effects. Based on these findings and recent research supporting the importance of other features in eliciting the interference effects, it can be hypothesized that the overall perception of a humanoid robot as a social entity instead of any individual feature of the robot is critical to elicit motor interference in a human observer’s behaviour. In this thesis, the term ‘overall perception’ refers to the human observer’s overall perception of the robot in terms of appearance, behaviour, the observer’s belief and environmental features that may affect the perception. Moreover, it was found in the motor coordination investigation that humans tended to synchronize themselves with a humanoid robot without being instructed to do so. This finding, together with the behaviour adaptation mechanism, may support the feasibility of bi-directional motor coordination in human-humanoid interaction.
|
13 |
Apprentissage du modèle d'action pour une interaction socio-communicative des hommes-robots / Action Model Learning for Socio-Communicative Human Robot InteractionArora, Ankuj 08 December 2017 (has links)
Conduite dans le but de rendre les robots comme socio-communicatifs, les chercheurs ont cherché à mettre au point des robots dotés de compétences sociales et de «bon sens» pour les rendre acceptables. Cette intelligence sociale ou «sens commun» du robot est ce qui finit par déterminer son acceptabilité sociale à long terme.Cependant, ce n'est pas commun. Les robots peuvent donc seulement apprendre à être acceptables avec l'expérience. Cependant, en enseignant à un humanoïde, les subtilités d'une interaction sociale ne sont pas évidentes. Même un échange de dialogue standard intègre le panel le plus large possible de signes qui interviennent dans la communication et sont difficiles à codifier (synchronisation entre l'expression du corps, le visage, le ton de la voix, etc.). Dans un tel scénario, l'apprentissage du modèle comportemental du robot est une approche prometteuse. Cet apprentissage peut être réalisé avec l'aide de techniques d'IA. Cette étude tente de résoudre le problème de l'apprentissage des modèles comportementaux du robot dans le paradigme automatisé de planification et d'ordonnancement (APS) de l'IA. Dans le domaine de la planification automatisée et de l'ordonnancement (APS), les agents intelligents nécessitent un modèle d'action (plans d'actions dont les exécutions entrelacées effectuent des transitions de l'état système) afin de planifier et résoudre des problèmes réels. Au cours de cette thèse, nous présentons deux nouveaux systèmes d'apprentissage qui facilitent l'apprentissage des modèles d'action et élargissent la portée de ces nouveaux systèmes pour apprendre les modèles de comportement du robot. Ces techniques peuvent être classées dans les catégories non optimale et optimale. Les techniques non optimales sont plus classiques dans le domaine, ont été traitées depuis des années et sont de nature symbolique. Cependant, ils ont leur part de quirks, ce qui entraîne un taux d'apprentissage moins élevé que souhaité. Les techniques optimales sont basées sur les progrès récents dans l'apprentissage en profondeur, en particulier la famille à long terme (LSTM) de réseaux récurrents récurrents. Ces techniques sont de plus en plus séduisantes par la vertu et produisent également des taux d'apprentissage plus élevés. Cette étude met en vedette ces deux techniques susmentionnées qui sont testées sur des repères d'IA pour évaluer leurs prouesses. Ils sont ensuite appliqués aux traces HRI pour estimer la qualité du modèle de comportement du robot savant. Ceci est dans l'intérêt d'un objectif à long terme d'introduire l'autonomie comportementale dans les robots, afin qu'ils puissent communiquer de manière autonome avec les humains sans avoir besoin d'une intervention de «magicien». / Driven with the objective of rendering robots as socio-communicative, there has been a heightened interest towards researching techniques to endow robots with social skills and ``commonsense'' to render them acceptable. This social intelligence or ``commonsense'' of the robot is what eventually determines its social acceptability in the long run.Commonsense, however, is not that common. Robots can, thus, only learn to be acceptable with experience. However, teaching a humanoid the subtleties of a social interaction is not evident. Even a standard dialogue exchange integrates the widest possible panel of signs which intervene in the communication and are difficult to codify (synchronization between the expression of the body, the face, the tone of the voice, etc.). In such a scenario, learning the behavioral model of the robot is a promising approach. This learning can be performed with the help of AI techniques. This study tries to solve the problem of learning robot behavioral models in the Automated Planning and Scheduling (APS) paradigm of AI. In the domain of Automated Planning and Scheduling (APS), intelligent agents by virtue require an action model (blueprints of actions whose interleaved executions effectuates transitions of the system state) in order to plan and solve real world problems. During the course of this thesis, we introduce two new learning systems which facilitate the learning of action models, and extend the scope of these new systems to learn robot behavioral models. These techniques can be classified into the categories of non-optimal and optimal. Non-optimal techniques are more classical in the domain, have been worked upon for years, and are symbolic in nature. However, they have their share of quirks, resulting in a less-than-desired learning rate. The optimal techniques are pivoted on the recent advances in deep learning, in particular the Long Short Term Memory (LSTM) family of recurrent neural networks. These techniques are more cutting edge by virtue, and produce higher learning rates as well. This study brings into the limelight these two aforementioned techniques which are tested on AI benchmarks to evaluate their prowess. They are then applied to HRI traces to estimate the quality of the learnt robot behavioral model. This is in the interest of a long term objective to introduce behavioral autonomy in robots, such that they can communicate autonomously with humans without the need of ``wizard'' intervention.
|
14 |
Emergence of complex behaviors from coordinated predictive control in humanoid robotics / Emergence de comportements complexes par commande prédictive coordonnée en robotique humanoïdeIbanez, Aurélien 25 September 2015 (has links)
Le problème de commande motrice de systèmes exécutant des activités multi-objectifs et fortement contraintes est à résoudre pour permettre l’émergence de comportements performants et robustes ; l’élaboration de stratégies complexes de coordination motrice est critique pour en assurer les performances, faisabilité et sécurité.Bien que les approches de commande prédictive multi-objectifs permettent la définition de stratégies complexes et sous contraintes coordonnant l’activité motrice du système, leur coût de calcul est un inconvénient critique à leur application.Le travail présenté dans ce manuscrit vise à considérer des techniques de commande prédictive multi-objectifs pour des applications pratiques à la robotique humanoïde.Une architecture de commande est alors proposée sous la forme d’un contrôleur multi-objectif à deux niveaux, exploitant les avantages respectifs des formulations prédictive et instantanée.La contribution de ce travail prend la forme de la validation des avantages d’une telle approche dans son développement pour des défis pratiques, en simulation et implémentation temps-réel, sur les robots iCub et TORO ainsi que sur des modèles d’humain.Le coût de calcul du niveau prédictif est contenu par l’introduction de problèmes réduits, permettant la formulation avantageuse de problèmes de commande au travers de programmes en nombres entiers mixtes et de distributions séquentielles et parallèles.Malgré les approximations sur la dynamique du système au niveau prédictif, des comportements complexes émergent, exploitant des stratégies de coordination entre objectifs et contraintes conflictuels pour augmenter les performances et robustesse face à des perturbations. / Rising to the challenge of motor control for systems involved in multi-objective and highly-constrained activities is a requirement to enable the emergence of efficient and robust behaviors; the elaboration of complex motor coordination strategies is critical in ensuring performance, feasibility and safety.Although multi-objective predictive approaches enable the definition of complex and constrained strategies coordinating the motor activity of the system, their computational cost is a critical drawback from practical applications.The work presented in this dissertation aims at considering multi-objective predictive control for feasible and practical applications to humanoid robotics.A control architecture is proposed to this purpose as a multi-objective, two-layered controller exploiting the respective advantages of predictive and instantaneous formulations.The contribution of this work takes the form of the validation of the benefits from such an approach in its development for practical challenges and applications, in simulation and real-time implementation, on the iCub and TORO robots and virtual human models.Computational demand of the predictive level is contained with the introduction of reduced multi-objective predictive problems, enabling computationally-favorable formulations of the control problem using mixed-integer programming and sequential and parallel distributions.Despite the resulting approximations on the dynamics of the system at the predictive level, complex behaviors are emerging, exploiting elaborate coordination strategies between conflicting objectives and constraints to increase performance and robustness against disturbances.
|
15 |
Computational foundations of anthropomorphic locomotion / Fondements calculatoires de la locomotion anthropomorpheCarpentier, Justin 01 September 2017 (has links)
La locomotion anthropomorphe est un processus complexe qui met en jeu un très grand nombre de degrés de liberté, le corps humain disposant de plus de trois cents articulations contre une trentaine chez les robots humanoïdes. Pris dans leur ensemble, ces degrés de liberté montrent une certaine cohérence rendant possible la mise en mouvement du système anthropomorphe et le maintien de son équilibre, dans le but d'éviter la chute. Cette thèse met en lumière les fondements calculatoires à l'origine de cette orchestration. Elle introduit un cadre mathématique unifié permettant à la fois l'étude de la locomotion humaine, et la génération de trajectoires locomotrices pour les robots humanoïdes. Ce cadre consiste en une réduction de la dynamique corps-complet du système pour ne considérer que sa projection autour du centre de gravité, aussi appelée dynamique centroïdale. Bien que réduite, nous montrons que cette dynamique centroïdale joue un rôle central dans la compréhension et la formation des mouvements locomoteurs. Pour ce faire, nous établissons dans un premier temps les conditions d'observabilité de cette dynamique, c'est-à-dire que nous montrons dans quelle mesure cette donnée peut être appréhendée à partir des capteurs couramment employés en biomécanique et en robotique. Forts de ces conditions d'observabilité, nous proposons un estimateur capable de reconstruire la position non-biaisée du centre de gravité. A partir de cet estimateur et de l'acquisition de mouvements de marche sur divers sujets, nous mettons en évidence la présence d'un motif cycloïdal du centre de gravité dans le plan sagittal lorsque l'humain marche de manière nominale, c'est-à-dire sans y penser. La présence de ce motif suggère l'existence d'une synergie motrice jusqu'alors ignorée, soutenant la théorie d'une coordination générale des mouvements pendant la locomotion. La dernière contribution de cette thèse porte sur la locomotion multi-contacts. Les humains ont une agilité remarquable pour effectuer des mouvements locomoteurs qui nécessitent l'utilisation conjointe des bras et des jambes, comme lors de l'ascension d'une paroi rocheuse. Comment doter les robots humanoïdes de telles capacités ? La difficulté n'est certainement pas technologique, puisque les robots actuels sont capables de développer des puissances mécaniques suffisantes. Leurs performances, évaluées tant en termes de qualité des mouvements que de temps de calcul, restent très limitées. Dans cette thèse, nous abordons le problème de génération de trajectoires multi-contacts sous la forme d'un problème de commande optimale. L'intérêt de cette formulation est de partir du modèle réduit de la dynamique centroïdale tout en répondant aux contraintes d'équilibre. L'idée originale consiste à maximiser la vraisemblance de cette dynamique réduite vis-à-vis de la dynamique corps-complet. Elle repose sur l'apprentissage d'une mesure d'occupation qui reflète les capacités cinématiques et dynamiques du robot. Elle est effective : l'algorithmique qui en découle est compatible avec des applications temps réel. L'approche a été évaluée avec succès sur le robot humanoïde HRP-2, sur plusieurs modes de locomotions, démontrant ainsi sa polyvalence. / Anthropomorphic locomotion is a complex process that involves a very large number of degrees of freedom, the human body having more than three hundred joints against thirty in humanoid robots. Taken as a whole, these degrees of freedom show a certain coherence making it possible to set the anthropomorphic system in motion and maintain its equilibrium, in order to avoid falling. This thesis highlights the computational foundations behind this orchestration. It introduces a unified mathematical framework allowing both the study of human locomotion and the generation of locomotive trajectories for humanoid robots. This framework consists of a reduction of the body-complete dynamics of the system to consider only its projection around the center of gravity, also called centroid dynamics. Although reduced, we show that this centroidal dynamics plays a central role in the understanding and formation of locomotive movements. To do this, we first establish the observability conditions of this dynamic, that is to say that we show to what extent this data can be apprehended from sensors commonly used in biomechanics and robotics. Based on these observability conditions, we propose an estimator able to reconstruct the unbiased position of the center of gravity. From this estimator and the acquisition of walking motions on various subjects, we highlight the presence of a cycloidal pattern of the center of gravity in the sagittal plane when the human is walking nominally, that is, to say without thinking. The presence of this motif suggests the existence of a motor synergy hitherto unknown, supporting the theory of a general coordination of movements during locomotion. The last contribution of this thesis is on multi-contact locomotion. Humans have remarkable agility to perform locomotive movements that require joint use of the arms and legs, such as when climbing a rock wall. How to equip humanoid robots with such capabilities? The difficulty is certainly not technological, since current robots are able to develop sufficient mechanical powers. Their performances, evaluated both in terms of quality of movement and computing time, remain very limited. In this thesis, we address the problem of generating multi-contact trajectories in the form of an optimal control problem. The interest of this formulation is to start from the reduced model of centroid dynamics while responding to equilibrium constraints. The original idea is to maximize the likelihood of this reduced dynamic with respect to body-complete dynamics. It is based on learning a measurement of occupation that reflects the kinematic and dynamic capabilities of the robot. It is effective: the resulting algorithmic is compatible with real-time applications. The approach has been successfully evaluated on the humanoid robot HRP-2, on several modes of locomotion, thus demonstrating its versatility.
|
Page generated in 0.0711 seconds