• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 38
  • 16
  • 16
  • 14
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Building A Tensegrity-Based Computational Model to Understand Endothelial Alignment Under Flow

Tamara Habes Al Muhtaseb (11535130) 29 November 2021 (has links)
Endothelial cells form the lining of the walls of blood vessels and are continuously subjected to mechanical stimuli from the blood flow. Microtubule-organizing center (MTOC),<br>also known as centrosome is a structure found in eukaryotic cells close to the nucleus. MTOC relocates relative to the nucleus when endothelial cells are exposed to shear stress which determines their polarization, thus it plays a critical role in cell migration and wound healing. The nuclear lamina, a mesh-like network that lies underneath the nuclear membrane, is composed of lamins, type V intermediate filament proteins. Mutations in LMNA gene that encodes A-type lamins cause the production of a mutant form of lamin A called progerin and leads to a rare premature aging disease known as Hutchinson-Gilford Progeria Syndrome<br><div>(HGPS). The goal of this study is to investigate how fluid flow affects the cytoskeleton of endothelial cells.</div><div><br></div>This thesis consists of two main sections; computational mechanical modeling and laboratory experimental work. The mechanical model was implemented using Ansys Workbench software as a tensegrity-based cellular model in order to simulate the state of an endothelial cell under the effects of induced shear stress from the blood fluid flow. This tensegrity-based cellular model - composed of a plasma membrane, cytoplasm, nucleus, microtubules, and<br><div>actin filaments - aims to understand the effects of the fluid flow on the mechanics of the cytoskeleton. In addition, the laboratory experiments conducted in this study examined the MTOC-nuclear orientation of endothelial cells under shear stress with the presence of wound healing. Wild-type lamin A and progerin-expressing BAECs were studied under static and sheared conditions.</div><div><br></div><div> Moreover, a custom MATLAB code was utilized to measure the MTOC-nuclear orientation</div>angle and classification. Results demonstrate that shear stress leads to different responses of the MTOC orientation between the wild-type and progerin-expressing cells around the vertical wound edge. Future directions for this study involve additional experimental work together with the improved simulation results to confirm the MTOC orientation<br>relative to the nucleus under shear stress.
22

Involvement of Xeroderma Pigmentosum Group A (XPA) in Progeria Arising From Defective Maturation of Prelamin A

Liu, Yiyong, Wang, Youjie, Rusinol, Antonio E., Sinensky, Michael S., Liu, Ji, Shell, Steven M., Zou, Yue 01 February 2008 (has links)
Cellular accumulation of DNA damage has been widely implicated in cellular senescence, aging, and premature aging. In Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD), premature aging is linked to accumulation of DNA double-strand breaks (DSBs), which results in genome instability. However, how DSBs accumulate in cells despite the presence of intact DNA repair proteins remains unknown. Here we report that the recruitment of DSB repair factors Rad50 and Rad51 to the DSB sites, as marked by γ-H2AX, was impaired in human HGPS and Zmpste24-deficient cells. Consistently, the progeria-associated DSBs appeared to be unrepairable although DSBs induced by camptothecin were efficiently removed in the progeroid cells. We also found that these progeroid cells exhibited nuclear foci of xeroderma pigmentosum group A (XPA), a unique nucleotide excision repair protein. Strikingly, these XPA foci colocalized with the DSB sites in the progeroid cells. This XPA-DSB association was further confirmed and found to be mediated by DNA, using a modified chromatin immunoprecipitation assay and coimmunoprecipitation. RNA interference (RNAi) knockdown of XPA in HGPS cells partially restored DSB repair as evidenced by Western blot analysis, immunofluorescence and comet assays. We propose that the uncharacteristic localization of XPA to or near DSBs inhibits DSB repair, thereby contributing to the premature aging phenotypes observed in progeria arising from genetic defects in prelamin A maturation.
23

A Finite Element Model for Investigation of Nuclear Stresses in Arterial Endothelial Cells

Rumberger, Charles B. 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Cellular structural mechanics play a key role in homeostasis by transducing mechanical signals to regulate gene expression and by providing adaptive structural stability for the cell. The alteration of nuclear mechanics in various laminopathies and in natural aging can damage these key functions. Arterial endothelial cells appear to be especially vulnerable due to the importance of shear force mechanotransduction to structure and gene regulation as is made evident by the prominent role of atherosclerosis in Hutchinson-Gilford progeria syndrome (HGPS) and in natural aging. Computational models of cellular mechanics may provide a useful tool for exploring the structural hypothesis of laminopathy at the intracellular level. This thesis explores this topic by introducing the biological background of cellular mechanics and lamin proteins in arterial endothelial cells, investigating disease states related to aberrant lamin proteins, and exploring computational models of the cell structure. It then presents a finite element model designed specifically for investigation of nuclear shear forces in arterial endothelial cells. Model results demonstrate that changes in nuclear material properties consistent with those observed in progerin-expressing cells may result in substantial increases in stress concentrations on the nuclear membrane. This supports the hypothesis that progerin disrupts homeostatic regulation of gene expression in response to hemodynamic shear by altering the mechanical properties of the nucleus.
24

Recherche des mécanismes impliqués dans les dérégulations de l'épissage alternatif à l'origine de la progéria et étude du rôle de l'étape d'épissage dans les changements globaux d'expression des gènes en réaction au choc thermique / Search of the mechanisms involved in alternative splicing misregulations resulting in progeria and study of the role of the splicing step in global changes of gene expression in response to thermic stress

Vautrot, Valentin 12 December 2013 (has links)
Le syndrome de Hutchinson-Gilford, ou progéria, est une pathologie génétique rare qui se caractérise par des symptômes assimilés à un vieillissement prématuré. Les mutations à l'origine de la progéria affectent le gène LMNA, codant la lamine A, qui joue un rôle majeur dans la formation, la maintenance et la résistance du noyau. Ces mutations activent l'utilisation de sites 5' alternatif ou cryptique d'épissage présents dans l'exon 11 du pré-ARNm LMNA en amont du site normalement utilisé. Nous avons révélé un effet des mutations sur la structure secondaire de l'ARN aux alentours des mutations, qui permet l'augmentation de l'utilisation des sites d'épissage mutants. De plus, nous avons montré l'implication de plusieurs protéines SR (SRSF1, SRSF5 et SRSF6) dans la régulation de l'utilisation des différents sites d'épissage. D'autre part, il a déjà été observé que les noyaux des cellules des patients atteints de progéria contiennent des granules de stress, les nSB, situés dans les régions péricentromériques des chromosomes et contenant des ARN dits satellite III et des facteurs d'épissage. Des nSB similaires sont formés dans les cellules saines suite à divers stress, comme le stress thermique. Il est possible que ces nSB séquestrent ces facteurs d'épissage afin de réguler le profil d'épissage alternatif des cellules pendant la régénération après un stress. Nous avons purifié les protéines associées aux ARN satellite III in vitro afin de trouver de nouveaux composants des nSB et analysé, par emploi de puces jonction-exon, le transcriptome de cellules soumises à un choc thermique, pour mieux comprendre à terme comment la formation des nSB peut affecter l'épissage alternatif / The Hutchinson-Gilford syndrome, also called progeria, is a rare genetic disease, characterized by symptoms that can be assimilated to accelerated natural ageing. Mutations that cause progeria affect the LMNA gene, which codes the lamin A that plays a major role in the shaping, maintenance and resistance of the nucleus. These mutations lead to the activation of alternative or cryptic 5' splice sites located within the exon 11 of LMNA pre-mRNA upstream from the normal 5' splice site. Our work revealed an effect of the mutations on the 2D RNA structure of the splice sites, which contributes to the increased use of the mutant sites. On top of it, we showed the impact of several SR proteins, (SRSF1, SRSF5 and SRSF6) on the regulation of the use of the exon 11 5' splice sites. On the other hand, it was previously observed that cells from progeria patients contain nuclear stress bodies (nSB), located in chromosomal pericentromeric regions and containing satellite III RNAs and several splicing regulatory proteins. Similar bodies are formed in healthy cells submitted to various stresses such as heat shock. A work hypothesis is that those nSBs sequester splicing factors in order to regulate the global alternative splicing profile in cells during the recovery period after stress. We purified proteins associated with satellite III RNAs in vitro, to find new components of the nSBs, and analyzed the transcriptome of cells subjected to heat shock using exon junction microarrays, in order to eventually understand how nSB formation can affect alternative splicing
25

Hallermann-Streiff Syndrome: No Evidence for a Link to Laminopathies

Kortüm, F., Chyrek, M., Fuchs, S., Albrecht, B., Gillessen-Kaesbach, G., Mütze, U., Seemanova, E., Tinschert, S., Wieczorek, D., Rosenberger, G., Kutsche, K. 04 August 2020 (has links)
Hallermann-Streiff syndrome (HSS) is a rare inherited disorder characterized by malformations of the cranium and facial bones, congenital cataracts, microphthalmia, skin atrophy, hypotrichosis, proportionate short stature, teeth abnormalities, and a typical facial appearance with prominent forehead, small pointed nose, and micrognathia. The genetic cause of this developmental disorder is presently unknown. Here we describe 8 new patients with a phenotype of HSS. Individuals with HSS present with clinical features overlapping with some progeroid syndromes that belong to the laminopathies, such as Hutchinson-Gilford progeria syndrome (HGPS) and mandibuloacral dysplasia (MAD). HGPS is caused by de novo point mutations in the LMNA gene, coding for the nuclear lamina proteins lamin A and C. MAD with type A and B lipodystrophy are recessive disorders resulting from mutations in LMNA and ZMPSTE24 , respectively. ZMPSTE24 in addition to ICMT encode proteins involved in posttranslational processing of lamin A. We hypothesized that HSS is an allelic disorder to HGPS and MAD. As the nuclear shape is often irregular in patients with LMNA mutations, we first analyzed the nuclear morphology in skin fibroblasts of patients with HSS, but could not identify any abnormality. Sequencing of the genes LMNA, ZMPSTE24 and ICMT in the 8 patients with HSS revealed the heterozygous missense mutation c.1930C>T (p.R644C) in LMNA in 1 female. Extreme phenotypic diversity and low penetrance have been associated with the p.R644C mutation. In ZMPSTE24 and ICMT , no pathogenic sequence change was detected in patients with HSS. Together, we found no evidence that HSS is another laminopathy.
26

DNA-Damage Accumulation and Replicative Arrest in Hutchinson-Gilford Progeria Syndrome

Musich, Phillip R., Zou, Yue 01 December 2011 (has links)
A common feature of progeria syndromes is a premature aging phenotype and an enhanced accumulation of DNA damage arising from a compromised repair system. HGPS (Hutchinson-Gilford progeria syndrome) is a severe form of progeria in which patients accumulate progerin, a mutant lamin A protein derived from a splicing variant of the lamin A/C gene (LMNA). Progerin causes chromatin perturbations which result in the formation of DSBs (double-strand breaks) and abnormal DDR (DNA-damage response). In the present article, we review recent findings which resolve some mechanistic details of how progerin may disrupt DDR pathways in HGPS cells. We propose that progerin accumulation results in disruption of functions of some replication and repair factors, causing the mislocalization of XPA (xeroderma pigmentosum group A) protein to the replication forks, replication fork stalling and, subsequently, DNA DSBs. The binding of XPA to the stalled forks excludes normal binding by repair proteins, leading to DSB accumulation, which activates ATM (ataxia telangiectasia mutated) and ATR (ATM- and Rad3-related) checkpoints, and arresting cell-cycle progression.
27

Building a Tensegrity-Based Computational Model to Understand Endothelial Alignment Under Flow

Al-Muhtaseb, Tamara 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Endothelial cells form the lining of the walls of blood vessels and are continuously subjected to mechanical stimuli from the blood flow. Microtubule-organizing center (MTOC), also known as centrosome is a structure found in eukaryotic cells close to the nucleus. MTOC relocates relative to the nucleus when endothelial cells are exposed to shear stress which determines their polarization, thus it plays a critical role in cell migration and wound healing. The nuclear lamina, a mesh-like network that lies underneath the nuclear membrane, is composed of lamins, type V intermediate filament proteins. Mutations in LMNA gene that encodes A-type lamins cause the production of a mutant form of lamin A called progerin and leads to a rare premature aging disease known as Hutchinson-Gilford Progeria Syndrome (HGPS). The goal of this study is to investigate how fluid flow affects the cytoskeleton of endothelial cells. This thesis consists of two main sections; computational mechanical modeling and laboratory experimental work. The mechanical model was implemented using Ansys Workbench software as a tensegrity-based cellular model in order to simulate the state of an endothelial cell under the effects of induced shear stress from the blood fluid flow. This tensegrity-based cellular model - composed of a plasma membrane, cytoplasm, nucleus, microtubules, and actin filaments - aims to understand the effects of the fluid flow on the mechanics of the cytoskeleton. In addition, the laboratory experiments conducted in this study examined the MTOC-nuclear orientation of endothelial cells under shear stress with the presence of wound healing. Wild-type lamin A and progerin-expressing BAECs were studied under static and sheared conditions. Moreover, a custom MATLAB code was utilized to measure the MTOC-nuclear orientation angle and classification. Results demonstrate that shear stress leads to different responses of the MTOC orientation between the wild-type and progerin-expressing cells around the vertical wound edge. Future directions for this study involve additional experimental work together with the improved simulation results to confirm the MTOC orientation relative to the nucleus under shear stress.
28

Three women autobiographers of the English Civil War period : Mrs. Lucy Hutchinson, Lady Ann Fanshawe, and Margaret, Duchess of Newcastle.

Shecter, Una Ràveh. January 1939 (has links)
No description available.
29

A Finite Element Model for Investigation of Nuclear Stresses in Arterial Endothelial Cells

Charles B Rumberger (13961916) 03 February 2023 (has links)
<p>Cellular structural mechanics play a key role in homeostasis by transducing mechanical signals to regulate gene expression and by providing adaptive structural stability for the cell. The alteration of nuclear mechanics in various laminopathies and in natural aging can damage these key functions. Arterial endothelial cells appear to be especially vulnerable due to the importance of shear force mechanotransduction to structure and gene regulation as is made evident by the prominent role of atherosclerosis in Hutchinson-Gilford progeria syndrome (HGPS) and in natural aging. Computational models of cellular mechanics may provide a useful tool for exploring the structural hypothesis of laminopathy at the intracellular level. This thesis explores this topic by introducing the biological background of cellular mechanics and lamin proteins in arterial endothelial cells, investigating disease states related to aberrant lamin proteins, and exploring computational models of the cell structure. It then presents a finite element model designed specifically for investigation of nuclear shear forces in arterial endothelial cells. Model results demonstrate that changes in nuclear material properties consistent with those observed in progerin-expressing cells may result in substantial increases in stress concentrations on the nuclear membrane. This supports the hypothesis that progerin disrupts homeostatic regulation of gene expression in response to hemodynamic shear by altering the mechanical properties of the nucleus.</p>
30

Dietary Assessment Tools and Biomarkers of Exposure for Carotenoid Intake

Schmitz, Ashley January 2016 (has links)
No description available.

Page generated in 0.047 seconds