• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 53
  • 53
  • 31
  • 26
  • 22
  • 19
  • 17
  • 12
  • 12
  • 11
  • 11
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Hybrid Technique of Energy Harvesting from Mechanical Vibration and Ambient Illumination

Rahman, M Shafiqur 10 August 2016 (has links)
Hybrid energy harvesting is a concept applied for improving the performance of the conventional stand-alone energy harvesters. The thesis presents the analytical formulations and characterization of a hybrid energy harvester that incorporates photovoltaic, piezoelectric, electromagnetic, and electrostatic mechanisms. The initial voltage required for electrostatic mechanism is obtained by the photovoltaic technique. Other mechanisms are embedded into a bimorph piezoelectric cantilever beam having a tip magnet and two sets of comb electrodes on two sides of its substructure. All the segments are interconnected by an electric circuit to generate combined output when subjected to vibration and solar illumination. Results for power output have been obtained at resonance frequency using an optimum load resistance. As the power transduced by each of the mechanisms is combined, more power is generated than those obtained by stand-alone mechanisms. The synergistic feature of this research is further promoted by adding fatigue analysis using finite element method.
12

The potential benefits to balance power shortage in future mobility houses with hydrogen energy storages

Eklund, Melissa January 2019 (has links)
This master thesis investigated how a hydrogen energy storage could be used anddimensioned to reduce the problem of power shortage in the local distributiongrid in Uppsala, Sweden. By implementing such a storage system in mobilityhouses, which are parking garages with integrated charging stations for electric vehicles and smart renewable energy solutions for power generation, the problem with power shortage could be decreased. The results showed that by integrating a hydrogen storage together with battery packs, it was possible to reduce power peaks in mobility houses. Further, it was clear that more power peaks facilitated the dimensioning of these type of systems. It was also shown that due to today's initial cost of hydrogen storages, the total savings related to a limited purchase of electricity from the grid were insignificant. It was therefore found that this type of hydrogen storage would not reduce costs in the short term for the mobility houses considered in this study. However, implementing a smaller kW storage could generate and improve knowledge in the hydrogen/hybrid field, which could facilitate the implementation of larger systems in the future. Furthermore, the results showed that it could be interesting to implement hydrogen storages on a bigger scale for municipalities or actors, who would want to reduce the power shortage in the local distribution grid.
13

Advanced Solutions for Renewable Energy Integration into the Grid Addressing Intermittencies, Harmonics and Inertial Response

Anzalchi, Arash 09 November 2017 (has links)
Numerous countries are trying to reach almost 100\% renewable penetration. Variable renewable energy (VRE), for instance wind and PV, will be the main provider of the future grid. The efforts to decrease the greenhouse gasses are promising on the current remarkable growth of grid connected photovoltaic (PV) capacity. This thesis provides an overview of the presented techniques, standards and grid interface of the PV systems in distribution and transmission level. This thesis reviews the most-adopted grid codes which required by system operators on large-scale grid connected Photovoltaic systems. The adopted topologies of the converters, the control methodologies for active - reactive power, maximum power point tracking (MPPT), as well as their arrangement in solar farms are studied. The unique L(LCL)2 filter is designed, developed and introduced in this thesis. This study will help researchers and industry users to establish their research based on connection requirements and compare between different existing technologies. Another, major aspect of the work is the development of Virtual Inertia Emulator (VIE) in the combination of hybrid energy storage system addressing major challenges with VRE implementations. Operation of a photovoltaic (PV) generating system under intermittent solar radiation is a challenging task. Furthermore, with high-penetration levels of photovoltaic energy sources being integrated into the current electric power grid, the performance of the conventional synchronous generators is being changed and grid inertial response is deteriorating. From an engineering standpoint, additional technical measures by the grid operators will be done to confirm the increasingly strict supply criteria in the new inverter dominated grid conditions. This dissertation proposes a combined virtual inertia emulator (VIE) and a hybrid battery-supercapacitor-based energy storage system . VIE provides a method which is based on power devices (like inverters), which makes a compatible weak grid for integration of renewable generators of electricity. This method makes the power inverters behave more similar to synchronous machines. Consequently, the synchronous machine properties, which have described the attributes of the grid up to now, will remain active, although after integration of renewable energies. Examples of some of these properties are grid and generator interactions in the function of a remote power dispatch, transients reactions, and the electrical outcomes of a rotating bulk mass. The hybrid energy storage system (HESS) is implemented to smooth the short-term power fluctuations and main reserve that allows renewable electricity generators such as PV to be considered very closely like regular rotating power generators. The objective of utilizing the HESS is to add/subtract power to/from the PV output in order to smooth out the high frequency fluctuations of the PV power, which may occur due to shadows of passing cloud on the PV panels. A control system designed and challenged by providing a solution to reduce short-term PV output variability, stabilizing the DC link voltage and avoiding short term shocks to the battery in terms of capacity and ramp rate capability. Not only could the suggested system overcome the slow response of battery system (including dynamics of battery, controller, and converter operation) by redirecting the power surges to the supercapacitor system, but also enhance the inertial response by emulating the kinetic inertia of synchronous generator.
14

Design and Evaluation of Hybrid Energy Storage Systems for Electric Powertrains

Mikkelsen, Karl January 2010 (has links)
At the time of this writing, increasing pressure for fuel efficient passenger vehicles has prompted automotive manufactures to invest in the research and development of electrically propelled vehicles. This includes vehicles of strictly electric drive and hybrid electric vehicles with internal combustion engines. To investigate some of the many technological innovations possible with electric power trains, the AUTO21 network of centres of excellence funded project E301-EHV; a project to convert a Chrysler Pacifica into a hybrid electric vehicle. The converted vehicle is intended for use as a test-bed in the research and development of a variety of advances pertaining to electric propulsion. Among these advances is hybrid energy storage, the focus of this investigation. A key difficulty of electric propulsion is the portable storage or provision of electricity, challenges are twofold; (1) achieving sufficient energy capacity for long distance driving and (2) ample power delivery to sustain peak driving demands. Where gasoline is highly energy dense and may be burned at nearly any rate, storing large quantities of electrical energy and supplying it at high rate prove difficult. Furthermore, the demands of regenerative braking require the storage system to undergo frequent current reversals, reducing the service life of some electric storage systems. A given device may be optimized for one of either energy storage or power delivery, at the sacrifice of the other. A hybrid energy storage system (HESS) attempts to address the storage needs of electric vehicles by combining two of the most popular storage technologies; lithium ion batteries, ideal for high energy capacity, and ultracapacitors, ideal for high power discharge and frequent cycles. Two types of HESS are investigated in this study; one using energy-dense lithium ion batteries paired with ultracapacitors and the other using energy-dense lithium ion batteries paired with ultra high powered batteries. These two systems are compared against a control system using only batteries. Three sizes of each system are specified with equal volume in each size. They are compared for energy storage, energy efficiency, vehicle range, mass and relative demand fluctuation when simulated for powering a model Pacifica through each of five different drive cycles. It is shown that both types of HESS reduce vehicle mass and demand fluctuation compared to the control. Both systems have reduced energy efficiency. In spite of this, a battery-battery system increases range with greater storage capacity, but battery-capacitor systems have reduced range. It is suggested that further work be conducted to both optimize the design of the hybrid storage systems, and improve the control scheme allocating power demand across the two energy sources.
15

High-frequency isolated dual-bridge series resonant DC-to-DC converters for capacitor semi-active hybrid energy storage system

Chen, Hao 14 August 2015 (has links)
In this thesis, a capacitor semi-active hybrid energy storage system for electric vehicle is proposed. A DC-to-DC bi-directional converter is required to couple the supercapacitor to the system DC bus. Through literature reviews, it was decided that a dual-bridge resonant converter with HF transformer isolation is best suited for the hybrid energy storage application. First, a dual-bridge series resonant converter with capacitive output filter is proposed. Modified gating scheme is applied to the converter instead of the 50% duty cycle gating scheme. Comparing to the 50% duty cycle gating scheme where only four switches work in ZVS, The modified gating scheme allows all eight switches working in ZVS at design point with high load level, and seven switches working in ZVS under other conditions. Next, a dual-bridge LCL-type series resonant converter with capacitive output filter is proposed. Similarly, the modified gating scheme is applied to the converter. This converter shows further improvement in ZVS ability. Operating principles, design examples, simulation results and experimental results of the two newly proposed converters are also presented. In the last part of the thesis, a capacitor semi-active hybrid energy storage system is built to test if the proposed converters are compatible to the system. The dual-bridge LCL-type series resonant converter is placed in parallel to the supercapacitor. The simulation and experimental results of the hybrid energy storage system match closely to the theoretical waveforms. / Graduate
16

Design and Evaluation of Hybrid Energy Storage Systems for Electric Powertrains

Mikkelsen, Karl January 2010 (has links)
At the time of this writing, increasing pressure for fuel efficient passenger vehicles has prompted automotive manufactures to invest in the research and development of electrically propelled vehicles. This includes vehicles of strictly electric drive and hybrid electric vehicles with internal combustion engines. To investigate some of the many technological innovations possible with electric power trains, the AUTO21 network of centres of excellence funded project E301-EHV; a project to convert a Chrysler Pacifica into a hybrid electric vehicle. The converted vehicle is intended for use as a test-bed in the research and development of a variety of advances pertaining to electric propulsion. Among these advances is hybrid energy storage, the focus of this investigation. A key difficulty of electric propulsion is the portable storage or provision of electricity, challenges are twofold; (1) achieving sufficient energy capacity for long distance driving and (2) ample power delivery to sustain peak driving demands. Where gasoline is highly energy dense and may be burned at nearly any rate, storing large quantities of electrical energy and supplying it at high rate prove difficult. Furthermore, the demands of regenerative braking require the storage system to undergo frequent current reversals, reducing the service life of some electric storage systems. A given device may be optimized for one of either energy storage or power delivery, at the sacrifice of the other. A hybrid energy storage system (HESS) attempts to address the storage needs of electric vehicles by combining two of the most popular storage technologies; lithium ion batteries, ideal for high energy capacity, and ultracapacitors, ideal for high power discharge and frequent cycles. Two types of HESS are investigated in this study; one using energy-dense lithium ion batteries paired with ultracapacitors and the other using energy-dense lithium ion batteries paired with ultra high powered batteries. These two systems are compared against a control system using only batteries. Three sizes of each system are specified with equal volume in each size. They are compared for energy storage, energy efficiency, vehicle range, mass and relative demand fluctuation when simulated for powering a model Pacifica through each of five different drive cycles. It is shown that both types of HESS reduce vehicle mass and demand fluctuation compared to the control. Both systems have reduced energy efficiency. In spite of this, a battery-battery system increases range with greater storage capacity, but battery-capacitor systems have reduced range. It is suggested that further work be conducted to both optimize the design of the hybrid storage systems, and improve the control scheme allocating power demand across the two energy sources.
17

Wind Power and Natural Disasters

Olauson, Jon January 2014 (has links)
Wind power can be related to natural disasters in several ways. This licentiate thesis gives some background and introduces four papers devoted to two aspects of this relation. The first section looks into how small-scale wind energy converters (WECs) could be used to generate power after a natural disaster. For this application diesel generators are the most common solution today, but there would be several advantages of replacing these systems. A study of off-grid systems with battery storage at 32 sites showed that photovoltaics (PV) were more suitable than WECs. The results were confirmed by a study for the entire globe; PV outperformed WECs at most sites when it comes to small-scale application. This is especially true for areas with a high disaster risk. Hybrid systems comprising both PV and WECs are however interesting at higher latitudes. For the Swedish case, it is shown that gridded data from a freely available meteorological model, combined with a statistical model, give good estimates of the mean wind speed at 10 meters above ground. This methodology of estimating the mean wind speed can be used when there is no time for a proper wind measurement campaign. The second section is directed towards wind power variability and integration. The results presented in the thesis are intended as a basis for future studies on how a substantially increased wind power capacity affects the electric grid in terms of stability, grid reinforcement requirements, increased balancing needs etc. A review of variability and forecastability for non-dispatchable renewable energy sources was performed together with researchers from the solar, wave and tidal power fields. Although a lot of research is conducted in these areas, it was concluded that more studies on combinations of the sources would be desirable. The disciplines could also learn from each other and benefit from the use of more unified methods and metrics. A model of aggregated hourly wind power production has finally been developed. The model is based on reanalysis data from a meteorological model and detailed information on Swedish WECs. The model proved very successful, both in terms of low prediction errors and in the match of probability density function for power and step changes of power. / Vindkraft kan relateras till naturkatastrofer på flera olika sätt. Den här licentiat\-avhandlingen ger bakgrund till och introducerar fyra artiklar som beskriver två aspekter av detta samband. I den första avdelningen undersöks hur småskalig vindkraft skulle kunna användas för att generera el efter en naturkatastrof. I dagsläget är det dieselaggregat som används för detta ändamål, men det skulle finnas stora fördelar med att övergå till förnybara system. En studie av 32 platser (myndigheten MSB:s utlandsstationeringar augusti 2012) visade att solceller var mer lämpade än vindkraftverk. Resultaten bekräftades av en studie för hela världen; solceller ger billigare system än småskaliga vindkraftverk för de flesta platser, inte minst om man tittar på områden som är utsatta för naturkatastrofer. Hybridsystem med både solceller och vindkraftverk var dock intressanta på högre breddgrader. För Sverige så visas det att data från en fritt tillgängliga meteorologisk modell tillsammans med en statistisk korrigering beroende på terrängtyp ger bra uppskattningar av medelvinden på 10 meters höjd. Den föreslagna metodiken kan vara användbar som ett komplement till vindmätningar eller om det inte finns tid eller möjlighet till en riktig mätkampanj. Den andra avdelningen är inriktad mot vindens variabilitet och integrering av vindkraft i kraftsystemet. De resultat som presenteras i denna avhandling är tänkta som en bas för framtida studier av hur en kraftigt ökad andel vindkraft påverkar elsystemet med avseende på stabilitet, nödvändiga nätförstärkningar, ökade krav på balanskraft etc. En översiktsstudie av variabilitet och prognosbarhet för intermittenta förnybara energikällor gjordes tillsammans med forskare inom sol-, våg och tidvattenkraft. Även om mycket forskning pågår inom dessa områden så var en slutsats att mer studier för kombinationer av olika källor skulle vara önskvärt. Forskare inom de olika disciplinerna skulle också kunna lära från varandra och dra fördel av gemensamma metoder och mått. Slutligen har en modell av aggregerad timvis vindkraftproduktion tagits fram. Modellen baseras på data från en meteorologisk modell samt detaljerad information om vindkraftverk i Sverige. Modellen visade sig vara mycket träffsäker, både vad gäller låga prediktionsfel och i överensstämmelse av sannolikhetsfördelning av effekt och stegförändring av timvis effekt.
18

Hybrid Energy System for Off – Grid Rural Electrification(Case study Kenya)

Oama, Clint Arthur January 2011 (has links)
The aim of this thesis study is to design a hybrid energy system comprised of wind turbines, diesel generators and batteries to provide electricity for an off - grid rural community in Kenya. Wind Measurements collected over six years from 12 locations in Kenya have been studied and one site selected for this project due to its wind potential, geographical location and socio-economic potential. The energy system is designed to cater for the electricity demand of 500 households, one school, one medical clinic and an irrigation system. The system will support up to 3000 people. The Hybrid Optimization Model for Electric Renewables (HOMER) is the software tool that has been used to simulate the hybrid system and analyze its results. The optimization has been carried out and presented according to cost of electricity and sensitivity graphs have been used demonstrate the optimization based on diesel price and wind turbine hub height.
19

Leadership based multi-objective optimization with applications in energy systems.

Bourennani, Farid 01 December 2013 (has links)
Multi-objective optimization metaheuristics (MOMs) are powerful methods for solving complex optimization problems but can require a large number of function evaluations to find optimal solutions. Thus, an efficient multi-objective optimization method should generate accurate and diverse solutions in a timely manner. Improving MOMs convergence speed is an important and challenging research problem which is the scope of this thesis. This thesis conducted the most comprehensive comparative study ever in MOMs. Based on the results, multi-objective (MO) versions of particle swarm optimization (PSO) and differential evolution (DE) algorithms achieved the highest performances; therefore, these two MOMs have been selected as bases for further acceleration in this thesis. To accelerate the selected MOMs, this work focuses on the incorporation of leadership concept to MO variants of DE and PSO algorithms. Two complex case studies of MO design of renewable energy systems are proposed to demonstrate the efficiency of the proposed MOMs. This thesis proposes three new MOMs, namely, leader and speed constraint multi-objective PSO (LSMPSO), opposition-based third evolution step of generalized DE (OGDE3), and multi-objective DE with leadership enhancement (MODEL) which are compared with seven state-of-the-art MOMS using various benchmark problems. LSMPSO was found to be the fastest MOM for the problem undertaken. Further, LSMPSO achieved the highest solutions accuracy for optimal design of a photovoltaic farm in Toronto area. OGDE3 is the first successful application of OBL to a MOM with single population (no-coevolution) using leadership and self-adaptive concepts; the convergence speed of OGDE3 outperformed the other MOMs for the problems solved. MODEL embodies leadership concept into mutation operator of GDE3 algorithm. MODEL achieved the highest accuracy for the 30 studied benchmark problems. Furthermore, MODEL achieved the highest solution accuracy for a MO optimization problem of hydrogen infrastructures design across the province Ontario between 2008 and 2025 considering electricity infrastructure constraints.
20

Design and optimization of the energy supply for the Global Interactive Village Environment : Techno-economic feasibility of an off grid solution for electrification in India

Frigeni, Marco January 2017 (has links)
In a energy scenario moving fast towards the deployment of renewable energy technologies and the need of reducing CO2 emissions, hybrid energy systems for rural electrification are a feasible alternative solution to the utilization of conventional Diesel generators. The project focuses on the design and optimization of an off-grid hybrid energy system for a village of around 250 inhabitants in Gujarat, India. The energy system is part of a bigger project, “G.I.V.E. Center of Excellence”, which has an innovative concept on a more sustainable rural lifestyle. The system, which has to depend mainly on locally available resources, intends to serve three main services: electrical demand, water purification and thermal energy for cooking. Two system configurations were designed and optimized to supply the estimated demand. The main outcome is a techno-economic analysis of the different system performances, which leads to a conclusion: dealing with the services individually has lower costs of implementation, less than half if compared to the implementation of a conventional Diesel generator. Furthermore, CO2 emissions are drastically reduced. A sensitivity analysis was performed to address the different uncertainties such as the cost of the fuel. The result shows that if enough biomass resource would be available, a system based only on renewable energy technologies is economically profitable. / G.I.V.E. Scandinavia

Page generated in 0.0581 seconds