Spelling suggestions: "subject:"hydrated""
31 |
Methane storage and transport via structure H clathrate hydrateSusilo, Robin 05 1900 (has links)
This thesis examines the prospect of structure H (sH) hydrate to be exploited for methane storage. The methane content in the hydrate, hydrate kinetics and conversion rates are areas of particular importance. Experiments and theory are employed at the macroscopic and molecular levels to study the relevant phenomena.
sH hydrate was successfully synthesized from ice particles with full conversion achieved within a day when thermal ramping above the ice melting point was applied. It was found that a polar guest (tert-butyl methyl ether / TBME) wets ice more extensively compared to two hydrophobic guests (neo-hexane / NH and methyl-cyclohexane / MCH). TBME also has much higher solubility in water. Consequently, the system with TBME was found to exhibit the highest initial hydrate formation rate from ice particles or in water in a well stirred vessel. However, the rate with the hydrophobic guests was the fastest when the temperature exceeded the ice point. Thus, the applied temperature ramping compensated the slow kinetics below the ice point for the hydrophobic guests and allowed faster overall conversion than the polar guest.
Structure, cage occupancy, composition and methane content in the hydrate were also determined by employing different techniques and the results were found to be consistent. It was found that the methane content in structure H hydrate with TBME was the smallest (103-125 v/v) whereas that with NH was 130-139 (v/v) and that with MCH was 132-142 (v/v). The methane content in structure II hydrate by using propane (C₃H₈) and tetrahydrofuran (THF) as the large guest molecule were also estimated. Optimal methane content was found at approximately 100 (v/v) for both C₃H₈ and THF systems with the large guest concentrations at 1% for C₃H₈ (10°C) and 1% for THF (room temperature). The gas content is of course lower than that for structure I hydrate (170 v/v) but one should consider the fact that the hydrate formation conditions are much lower (less than 1 MPa).
Finally, MD simulations revealed for the first time the formation of defects in the cavities for the TBME/methane/water (sH hydrate) system which may affect hydrate stability and kinetics.
|
32 |
Evaluation of chloral hydrate and diazepam in the relief of anxiety in young pedodontic patients a thesis submitted in partial fulfillment ... in pedodontics ... /Cook, Gary. January 1981 (has links)
Thesis (M.S.)--University of Michigan, 1981.
|
33 |
Evaluation of chloral hydrate and diazepam in the relief of anxiety in young pedodontic patients a thesis submitted in partial fulfillment ... in pedodontics ... /Cook, Gary. January 1981 (has links)
Thesis (M.S.)--University of Michigan, 1981.
|
34 |
Methane storage and transport via structure H clathrate hydrateSusilo, Robin 05 1900 (has links)
This thesis examines the prospect of structure H (sH) hydrate to be exploited for methane storage. The methane content in the hydrate, hydrate kinetics and conversion rates are areas of particular importance. Experiments and theory are employed at the macroscopic and molecular levels to study the relevant phenomena.
sH hydrate was successfully synthesized from ice particles with full conversion achieved within a day when thermal ramping above the ice melting point was applied. It was found that a polar guest (tert-butyl methyl ether / TBME) wets ice more extensively compared to two hydrophobic guests (neo-hexane / NH and methyl-cyclohexane / MCH). TBME also has much higher solubility in water. Consequently, the system with TBME was found to exhibit the highest initial hydrate formation rate from ice particles or in water in a well stirred vessel. However, the rate with the hydrophobic guests was the fastest when the temperature exceeded the ice point. Thus, the applied temperature ramping compensated the slow kinetics below the ice point for the hydrophobic guests and allowed faster overall conversion than the polar guest.
Structure, cage occupancy, composition and methane content in the hydrate were also determined by employing different techniques and the results were found to be consistent. It was found that the methane content in structure H hydrate with TBME was the smallest (103-125 v/v) whereas that with NH was 130-139 (v/v) and that with MCH was 132-142 (v/v). The methane content in structure II hydrate by using propane (C₃H₈) and tetrahydrofuran (THF) as the large guest molecule were also estimated. Optimal methane content was found at approximately 100 (v/v) for both C₃H₈ and THF systems with the large guest concentrations at 1% for C₃H₈ (10°C) and 1% for THF (room temperature). The gas content is of course lower than that for structure I hydrate (170 v/v) but one should consider the fact that the hydrate formation conditions are much lower (less than 1 MPa).
Finally, MD simulations revealed for the first time the formation of defects in the cavities for the TBME/methane/water (sH hydrate) system which may affect hydrate stability and kinetics. / Applied Science, Faculty of / Chemical and Biological Engineering, Department of / Graduate
|
35 |
Insight into the Mechanism of Formation of Channel Hydrates via TemplatingStokes, S.P., Seaton, Colin C., Eccles, K.S., Maguire, A.R., Lawrence, S.E. 2014 January 1922 (has links)
No / Cocrystallization of modafinil, (1), and 1,4-diiodotetrafluorobenzene, (2), in toluene leads to the formation of a metastable modafinil channel hydrate containing an unusual hydrogen bonded dimer motif involving the modafinil molecules that is not seen in anhydrous forms of modafinil. Computational methodologies utilizing bias drift-free differential evolution optimization have been developed and applied to a series of molecular clusters and multicomponent crystals in the modafinil/water and modafinil/water/additive systems for the additive molecules (2) or toluene. These calculations show the channel hydrate is less energetically stable than the anhydrous modafinil but more stable than a cocrystal involving (1) and (2). This provides theoretical evidence for the observed instability of the channel hydrate. The mechanism for formation of the channel hydrate is found to proceed via templating of the modafinil molecules with the planar additive molecules, allowing the formation of the unusual hydrogen-bonded modafinil dimer. It is envisaged that the additive is then replaced by water molecules to form the channel hydrate. The formation of the channel hydrate is more likely in the presence of (2) compared to toluene due to the destabilizing effect of the larger iodine molecules protruding into neighboring modafinil clusters. / Science Foundation Ireland, IRCSET, UCC 2012 Strategic Research Fund
|
36 |
Etude du captage du CO2 par la cristallisation des hydrates de gaz : Application au mélange CO2-N2 / CO2 capture by gaz hydrate cristallization : Application on the CO2-N2 mixtureBouchemoua, Amina 16 July 2012 (has links)
Le captage du CO2 représente un enjeu industriel majeur et scientifique du siècle. Il existe différentes méthodes de séparation et de captage du CO2, telles que, l'absorption aux amines et l’adsorption. Bien que ces processus soient bien développés au niveau industriel, ils sont très consommateurs d’énergie. Le procédé de captage du CO2 par formation d’hydrates de gaz consomme moins d’énergie et semble être très prometteur pour la séparation du CO2 Les hydrates de gaz sont des composés cristallins de la famille des clathrates dans lesquels des molécules d'eau se relient entre elles par des liaisons hydrogène pour former des cavités qui peuvent contenir des molécules de gaz. La formation d'hydrates de gaz est favorisée par une haute pression et basse température.Cette étude est menée dans le cadre du projet ANR SECOHYA. L'objectif est d'étudier les conditions thermodynamiques et cinétiques du procédé de captage du CO2 par cristallisation d'hydrates de gaz.Premièrement, nous avons développé un dispositif expérimental pour réaliser des expériences afin de déterminer les conditions thermodynamiques et cinétiques de formation des hydrates mixtes CO2-N2 dans l'eau comme phase liquide. Nous avons montré que la pression opératoire peut être très élevée et la température très basse. Pour la faisabilité du projet, nous avons utilisé le TBAB (TétraButylAmmonium Bromure) en tant qu'additif thermodynamique dans la phase liquide. L'utilisation du TBAB peut réduire considérablement la pression opératoire.Dans la deuxième partie de cette étude, nous avons présenté un modèle thermodynamique, basé sur le modèle de van der Waals et Platteeuw. Ce modèle permet de prédire les conditions d'équilibre thermodynamique de formation des hydrates de gaz. Des données expérimentales d'équilibre de mélanges CO2-CH4 et de CO2-N2 sont présentées et comparées à des résultats théoriques. / CO2 capture and sequestration represent a major industrial and scientific challenge of thiscentury. There are different methods of CO2 separation and capture, such as solid adsorption, amines adsorption and cryogenic fractionation. Although these processes are welldeveloped at industrial level, they are energy intensive. Hydrate formation method is a lessenergy intensive and has an interesting potential to separate carbon dioxide. Gas hydrates are Document crystalline compounds that consist of hydrogen bonded network of water molecules trapping a gas molecule. Gas hydrate formation is favored by high pressure and low temperature. This study was conducted as a part of the SECOHYA ANR Project. The objective is to study the thermodynamic and kinetic conditions of the process to capture CO2 by gas hydrate crystallization. Firstly, we developed an experimental apparatus to carry out experiments to determine the thermodynamic and kinetic formation conditions of CO2-N2 gas hydrate mixture in water as liquid phase. We showed that the operative pressure may be very important and the temperature very low. For the feasibility of the project, we used TBAB (TetraButylAmmonium Bromide) as thermodynamic additive in the liquid phase. The use of TBAB may reduce considerably the operative pressure.In the second part of this study, we presented a thermodynamic model, based on the van der Waals and Platteeuw model. This model allows the estimation of thermodynamic equilibrium conditions. Experimental equilibrium data of CO2-CH4 and CO2-N2 mixtures are presented and compared to theoretical results.
|
37 |
Captage du dioxyde de carbone par cristallisation de clathrate hydrate en présence de cyclopentane : Etude thermodynamique et cinétique / Carbon dioxide capture by clathrate hydrate crystallization in presence of cyclopentane : Kinetics and thermodynamics study.Galfré, Aurélie 14 February 2014 (has links)
Le CO2 est capté par formation de clathrates hydrates sous l’action d’un promoteur de cristallisation thermodynamique. Les clathrates hydrates sont des composés d’inclusion non stœchiométriques formés de molécules d’eau organisées en réseau de cavités piégeant des molécules de gaz. Ce procédé de captage consiste à piéger de façon sélective le dioxyde de carbone dans les cavités des clathrates hydrates et à le séparer ainsi des autres gaz. Les hydrates mixtes de cyclopentane (CP) + gaz ont été étudiés dans le cadre du projet FUI ACACIA et du projet européen ICAP. Les premières expériences se sont focalisées sur l’étude des équilibres quadri phasiques (gaz CO2/N2, eau liquide, cyclopentane liquide et hydrate). Le cyclopentane est un promoteur thermodynamique qui forme des hydrates mixtes de CO2 + N2 + CP à basse pression et température modérée. La pression d’équilibre des hydrates mixtes est réduite jusqu’à 97% par rapport à la pression d'équilibre initiale des hydrates de gaz. La sélectivité de captage du CO2 dans les hydrates mixtes est augmentée et le volume de gaz stocké est de 40 m3gaz/m3hydrate. Une seconde étude expérimentale, conduite en présence d’une sonde FBRM (Focused Beam Reflectance Measurements) et d’une émulsion stable directe de CP/eau, a montré que la cinétique de cristallisation des hydrates mixtes de CP + CO2 est limitée par la diffusion du gaz à l’interface gaz/liquide. La sonde FBRM permet de détecter parfaitement l’apparition de la nucléation. Le changement de profil de la distribution en longueurs de corde (CLD) est non seulement lié à l’apparition des mécanismes de cristallisation (dont l’agglomération) mais aussi à la disparition des gouttes de CP au profit des hydrates qui cristallisent par un mécanisme à cœur rétrécissant. / CO2 separation and capture by clathrate hydrate crystallization is a non-conventional way of trapping and storing gas molecules from flue gases. Clathrates hydrates are non-stoichiometric ice-like crystalline solids consisting of a combination of water molecules and suitable guest molecules. Mixed hydrates of cyclopentane (CP) + gas have been studied in one national project (FUI ACACIA) and a European program (iCAP). Cyclopentane is an organic additive which forms mixed hydrates of CP + CO2 + N2 at low pressure and moderate temperature. The equilibrium pressure is decreasing up to 97 % (relative to the equilibrium pressure without cyclopentane). CO2 selectivity in hydrates is enhanced and gas storage capacity approaches a roughly constant value of 40 m3gas (STP) /m3hydrate. Crystallization of CP + CO2 mixed hydrates seems limited by gas diffusion through the gas / liquid interface, which gets in the way of the determination of the intrinsic kinetic constants of crystallization. Experimental studies have also been investigated in presence of a Focused Beam Reflectance Measurements (FBRM) probe in stable emulsion of CP in water. FBRM probe can successfully identify hydrate nucleation. The sharp change in the mean chord length and the spread of Chord Length Distribution (CLD) are related to the progressive disappearance of the CP droplets in favor of the CP + CO2 mixed hydrates formation. The change in the mean chord length distribution is not only related to the agglomeration phenomenon of the particles but also to the occurrence of the shrinking core crystallization of the CP droplets.
|
38 |
A Study of Formation and Dissociation of Gas HydrateBadakhshan Raz, Sadegh 2012 May 1900 (has links)
The estimation of gas hydrate volume in closed systems such as pipelines during shut-in time has a great industrial importance. A method is presented to estimate the volume of formed or decomposed gas hydrate in closed systems. The method was used to estimate the volume of formed gas hydrate in a gas hydrate crystallizer under different subcoolings of 0.2, 0.3, 0.6 and 4.6 degrees C, and initial pressures of 2000 and 2500 psi. The rate of gas hydrate formation increased with increases in subcooling and initial pressure. The aim of the second part of the study was the evaluation of the formation of gas hydrate and ice phases in a super-cooled methane-water system under the cooling rates of 0.45 and 0.6 degrees C/min, and the initial pressures of 1500, 2000 and 2500 psi, in pure and standard sea water-methane gas systems. The high cooling rate conditions are likely to be present in pipelines or around a wellbore producing from gas hydrate reservoir. Results showed that the initial pressure and the chemical composition of the water had little effect on the ice and gas hydrate formation temperatures, which were in the range of -8 +/- 0.2 degrees C in all the tests using the cooling rate of 0.45 degrees C/min. In contrast, the increase in the cooling rate from 0.45 to 0.6 degrees C/min decreased the ice and gas hydrate formation temperatures from -8 degrees C to -9 degrees C. In all tests, ice formed immediately after the formation of gas hydrate with a time lag less than 2 seconds. Finally, an analytical solution was derived for estimating induced radial and tangential stresses around a wellbore in a gas hydrate reservoir during gas production. Gas production rates between 0.04 to 0.12 Kg of gas per second and production times between 0.33 to 8 years were considered. Increases in production time and production rate induced greater radial and tangential stresses around the wellbore.
|
39 |
Determination Of Hydrate Formation Conditions Of Drilling FluidsKupeyeva, Aliya 01 August 2007 (has links) (PDF)
The objective of this study is to determine hydrate formation conditions of a multicomponent polymer based drilling fluid. During the study, experimental work is carried out by using a system that contains a high-pressure hydrate formation cell and
pressure-temperature data is recorded in each experiment.
Different concentrations of four components of drilling fluid, namely potassium chloride (KCl), partially hydrolyzed polyacrylicamide (PHPA), xanthan gum (XCD) and polyalkylene glycol (poly.glycol) were used in the experiments, to study their effect on hydrate formation conditions.
|
40 |
Three-dimensional gas migration and gas hydrate systems of south Hydrate Ridge, offshore OregonGraham, Emily Megan 15 July 2011 (has links)
Hydrate Ridge is a peanut shape bathymetric high located about 80 km west of Newport, Oregon on the Pacific continental margin, within the Cascadia subduction zone’s accretionary wedge. The ridge's two topographic highs (S. and N. Hydrate Ridge) are characterized by gas vents and seeps that were observed with previous ODP initiatives. In 2008, we acquired a 3D seismic reflection data set using the P-Cable acquisition system to characterize the subsurface fluid migration pathways that feed the seafloor vent at S. Hydrate Ridge.
The new high-resolution data reveal a complex 3D structure of localized faulting within the gas hydrate stability zone (GHSZ). We interpret two groups of fault-related migration pathways. The first group is defined by regularly- and widely-spaced (100-150 m) faults that extend greater than 300ms TWT (~ 250 m) below seafloor and coincide with the regional thrust fault orientations of the Oregon margin. The deep extent of these faults makes them potential conduits for deeply sourced methane and may include thermogenic methane, which was found with shallow drilling during ODP Leg 204. As a fluid pathway these faults may complement the previously identified sand-rich, gas-filled stratigraphic horizon, Horizon A, which is a major gas migration pathway to the summit of S. Hydrate Ridge. The second group of faults is characterized by irregularly but closely spaced (~ 50 m), shallow fractures (extending < 160ms TWT below seafloor, ~ 115 m) found almost exclusively in the GHSZ directly beneath the seafloor vent at the summit of S. Hydrate Ridge. These faults form a closely-spaced network of fractures that provide multiple migration pathways for free gas entering the GHSZ to migrate vertically to the seafloor. We speculate that the faults are the product of hydraulic fracturing due to near-lithostatic gas pressures at the base of the GHSZ. These fractures may fill with hydrate and develop a lower permeability, which will lead to a buildup of gas pressures below the GHSZ. This may lead to a vertical propagation of new fractures to release the overpressure, which results in the high concentration of shallow fractures within the GHSZ seen in the 2008 data. / text
|
Page generated in 0.0594 seconds