• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 293
  • 166
  • 109
  • 37
  • 24
  • 15
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 789
  • 107
  • 91
  • 89
  • 86
  • 84
  • 71
  • 70
  • 62
  • 55
  • 54
  • 52
  • 50
  • 46
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Refinement in Vision-Based Localization of a Remotely Operated Vehicle for Parameter Identification

Chou, Chun-hung 11 September 2007 (has links)
none
32

Modelling random wave boundary layers

Harris, John M. January 1997 (has links)
No description available.
33

Design and Evaluation of an Automated Experimental Test Rig for Determination of the Dynamic Characteristics of Fluid-Film Bearings

Swanson, Erik Evan 23 September 1998 (has links)
Hydrodynamic journal bearings are applied in a wide range of both old and new, advanced rotating machinery designs. To maintain existing machinery, as well as to design new, state of the art machines, validated analytical models for these bearings are needed. This work documents the development and evaluation of an automated test rig for the evaluation of hydrodynamic journal bearings to provide some of the needed experimental data. This work describes the test rig in detail, including the results of experimental characterization of many of the test rig subsystems. Experimental data for a two axial groove bearing and a pressure dam bearing under steady load conditions are presented for a range of loads at two different shaft speeds. Experimental data and analytical results for dynamic loading are also discussed. The work concludes with a summary of the state of the test rig and recommendations for further work. / Ph. D.
34

Experimental study of shock-driven, variable-density turbulence using a complex interface

Reilly, David James 07 January 2016 (has links)
The overarching goal of this work is to advance the current knowledge of hydrodynamic instabilities (namely, Richtmyer-Meshkov and Kelvin-Helmholtz instabilities) and associated turbulent mixing phenomena which is important for several emerging technologies and verification/validation of numerical models being developed to study these phenomena. Three experimental campaigns were designed to focus on understanding the evolution of the instability under different impulsive acceleration histories and highlight the impact of initial conditions on the developing turbulent flow environment. The first campaign highlights the importance of initial baroclinic torque distribution along the developing shocked interface in a twice-shocked variable-density flow environment. The second campaign is a parametric study which aims at providing a large dataset for validating models in literature as well as simulations. In the last study, a new type of initial condition was designed to study the effect of initial conditions on late time turbulent flows. A description of the optical diagnostic techniques developed in our laboratory in order to complete these studies will be given. Now each campaign will be introduced. In the first campaign, an inclined interface perturbation is used as the initial condition. The Mach number (1.55), angle of inclination (60 degrees), and gas pair (N2/CO2) were held constant. The parameter which changed was the distance that the initial condition was placed relative to the end of the shock tube (i.e., the end of the test section). Three distances were used. The vorticity distribution was found to be very different for the most developed case after reshock. Furthermore, the most developed case started to develop an inertial range before reshock. The second campaign is parametric and seeks to test a proposed inclined interface scaling technique. The data is also useful for comparing to Ares simulation results. The parameter space covered Mach number (1.55 and 2.01), inclination angle (60 degrees and 80 degrees), and Atwood number (0.23 and 0.67). PLIF was developed and used to collect data for four cases before and after reshock. Linear and nonlinear cases developed very differently before reshock, but their mixing widths converged after reshock. The last campaign involves a new perturbation technique which generates what will be referred to as a complex interface. Counter-flowing jets were placed near the interface exit ports to create shear. The perturbation was made more complex by also injecting light (heavy) gas into the heavy (light) one. Density and velocity statistics were collected simultaneously. The complex case retained a signature of the inclined interface perturbation at late time before reshock and developed a larger inertial range than its inclined interface counterpart. Important parameters for a variable-density turbulence model are also presented.
35

Hydrodynamic cavitation applied to food waste anaerobic digestion

Tran, David January 2016 (has links)
Innovative pre-treatment methods applied to anaerobic digestion (AD) have developed to enhance the methane yields of food waste. This study investigates hydrodynamic cavitation, which induce disintegration of biomass through microbubble formations, impact on food waste solubilisation and methane production during following AD. Two different sub-streams of food waste (before and after the digestion) pre-treated by hydrodynamic cavitation were evaluated in lab scale for its potential for implementation in a full scale practise. First, the optimum condition for the hydrodynamic cavitation device was determined based on the solids and chemical changes in the food waste. The exposure time was referred to as the number of cycles that the sample was recirculated through the cavitation inducer’s region. The optimal cycles were later tested as a pre-treatment step in a BMP test and semi-CSTR lab scale operation. The tests showed that sufficient impact from the hydrodynamic cavitation was achieved by 20 cavitation cycles. Due to the pre-treatment, food waste solubilisation increased, up to 400% and 48% in terms of turbidity and sCOD measurements, respectively. In the BMP test, the treated samples improved the methane yield by 9-13%, where the digested food waste increased its kinetic constant by 60%. Fresh food waste was then processed in the semi-CSTR operation and the methane yield was increased by up to 17% with hydrodynamic cavitation for two reference periods. These promising results suggest that the hydrodynamic cavitation can be implemented for full scale production with food waste.
36

Fingering of chemical fronts

De Wit, Anne 20 February 2004 (has links)
The present work aims at studying the coupling between hydrodynamic fingering instabilities and chemical reactions at the interface between two miscible solutions. Hydrodynamic deformations of interfaces between two reactive fluids as well as flows induced by chemical reactions at the front between two initially steady fluids are encountered frequently in combustion, petroleum, chemical and pharmaceutical engineering. Most of the time, concrete applications imply a very large number of variables so that an understanding of the fundamental processes of chemo-hydrodynamic coupling is out of reach. Our goal is here to analyze a much simpler model system in which only one mechanism of hydrodynamic instability is at play and for which the chemical reactions can be modeled by a one or two-variable model. Buoyantly unstable, autocatalytic chemical fronts, are one such model system, which can be used as prototype to study the effects of the coupling between chemical reactions and hydrodynamic fingering instabilities. Fingering processes occur whenever a fluid of high mobility displaces a less mobile one in a porous medium. The initially planar interface looses then stability and a cellular fingering deformation of the interface is observed. Such an instability has been observed, for instance, in the iodate-arsenous acid and chlorite-tetrathionate reactions, autocatalytic redox reactions known to produce a change of density across a traveling front. Fingering happens there when the heavier solution lies on top of the lighter one in the gravity field. Our theoretical contribution to the analysis of fingering of chemical fronts focuses on different points which we detail in this thesis along the following outline. In chapter 2, we introduce fingering phenomena occurring in porous media and distinguish the situation of viscous and density fingering of pure non reactive fluids. Chapter 3 reviews the literature on coupling between fingering and chemical reactions before studying the linear stability conditions as well as nonlinear dynamics of density fingering of isothermal iodate-arsenous acid fronts. This prototype nonlinear redox reaction is the first one on which experimental results on fingering in spatially extended set-ups have been obtained. We next analyze in chapter 4 the density fingering of another front producing autocatalytic system i.e. the chlorite-tetrathionate reaction in order to address the influence of the chemical kinetics on the dynamics observed. The influence of the exothermicity of the reaction is then presented in chapter 5. Eventually, chapter 6 analyzes what happens if the kinetics is now bistable and further compares the situation of both viscous and density fingering of bistable fronts. We then conclude and present suggestions for future work in this subject at the frontier between nonlinear chemistry, hydrodynamics and engineering.
37

An investigation into near-field and far-field added resistance gradient based predictions of low-frequency damping

Goodwin, Paul January 1993 (has links)
No description available.
38

Sediment Transport and Pathogen Indicator Modeling in Lake Pontchartrain

Chilmakui, Chandra Sekhar 20 January 2006 (has links)
A nested three dimensional numerical modeling application was developed to determine the fate of pathogen indicators in Lake Pontchartrain discharged from its tributaries. To accomplish this, Estuarine, coastal and ocean model with sediment (ECOMSED) was implemented to simulate various processes that would determine the fate and transport of fecal coliform bacteria in the lake. The processes included hydrodynamics, waves, sediment transport, and the decay and transport of the fecal coliforms. Wind and tidal effects were accounted along with the freshwater inflows. All the components of the modeling application were calibrated and validated using measured data sets. Field measurements of the conventional water quality parameters and fecal coliform levels were used to calibrate and validate the pathogen indicator transport. The decay of the fecal coliforms was based on the literature and laboratory tests. The sediment transport module was calibrated based on the satellite reflectance data in the lake. The north shore near-field model indicated that the fecal coliform plume can be highly dynamic and sporadic depending on the wind and tide conditions. It also showed that the period of impact due to a storm event on the fecal coliform levels in the lake can be anywhere from 1.5 days for a typical summer event to 4 days for an extreme winter event. The model studies showed that the zone of impact of the stormwater from the river was limited to a few hundred meters from the river mouth. Finally, the modeling framework developed for the north shore was successfully applied to the south shore of Lake Pontchartrain to simulate fate and transport of fecal coliforms discharged through the urban stormwater outfalls.
39

Bridging the gulf between microfluidics and high throughput industrial applications

Miller, Brian Maxdell January 2015 (has links)
The use of biosensors and microfluidics devices is often limited by constraints in terms of volumetric throughput due to the small dimensions of devices in microfluidics and of expensive and complicated sample preparation steps necessary to ensure the operation of biosensing platforms. This can be due to high initial sample volume with low concentration analytes or complex media matrices from which analytes are extracted. While working to analyse Cryptosporidium presence in drinking water a novel technique was developed. The huge advantages from using a label-free, buffer-free hydrodynamic mechanism in terms of cost, coupled with the ease of simply scaling a single design to match any target size and the ability manufacture these quickly and easily using cheap and readily available robust materials (i.e. acrylic sheet) may allow a revolution in the scope of microfluidics applications. Using a cascaded array of hydrodynamic focusing devices uniquely designed for parallelised operation from a single pump or pressure source, the array can be tailored to meet the specific requirements of many applications, in particular high volume and low concentration target analyte enrichment from complex media.
40

Numerical Simulation of Hydrodynamic Bearings with Engineered Slip/No-Slip Surfaces

Fortier, Alicia Elena 30 July 2004 (has links)
The no-slip boundary condition is the foundation of traditional lubrication theory. It says that fluid adjacent to a solid boundary has zero velocity relative to that solid surface. For most practical applications the no-slip boundary condition is a good model for predicting fluid behavior. However, recent experimental research has found that for special engineered surfaces the no-slip boundary condition is not applicable. Measured velocity profiles suggest that slip is occurring at the interface. In the present study, it is found that judicious application of slip to a bearings surface can lead to improved bearing performance. The focus of this thesis is to analyze the effect an engineered slip/no-slip surface could have on hydrodynamic bearing performance. A heterogeneous pattern is applied to the bearing surface in which slip occurs in certain regions and is absent in others. Analysis is performed numerically for both plane pad slider bearings and journal bearings. The performance parameters evaluated for the bearings are load carrying capacity, side leakage rate and friction force. Fluid slip is assumed to occur according to the Navier relation and the effect of a critical value for slip onset is considered.

Page generated in 0.08 seconds