• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 400
  • 97
  • 69
  • 45
  • 38
  • 33
  • 20
  • 12
  • 11
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 842
  • 164
  • 97
  • 96
  • 88
  • 82
  • 72
  • 67
  • 63
  • 62
  • 58
  • 58
  • 57
  • 55
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Über die Denaturierungstemperatur des Enzyms Glukoseoxidase als Mass seiner Funktionsstabilität sowie ihre nano-kalorimetrische Bestimmung

Weiß, Thomas. January 2006 (has links)
Freiburg i. Br., Univ., Diss., 2007.
42

Vliv struktury pěstebních školkařských substrátů na kvalitu produkce

Flaschková, Karolína January 2014 (has links)
The experimental plots Department of Breeding and Propagation of Ornamental Plants Gardening faculties in Lednice, was founded in 2013-year vegetation attempt. Experi-mentally evaluated the influence of substrates on the root system of ornamental plants. The experimental wood-fault was used Berberis thunbergii 'Golden Ring'. Experimental medium was creature-no RKS II substrate and the substrate for broadleaf blended with soil conditioner. The plants were evaluated morphological parameters such as plant height, number of shoots, the average length of shoots, root collar diameter and the volume of the root system.
43

Nanomechanical characterisation of cells and biocompatible substrates

Donno, Roberto January 2014 (has links)
Atomic Force Microscopy (AFM) is a powerful technique that has evolved from being a purely imaging tool to a one capable of providing multifunctional information, offering exciting new possibilities for nano-biotechnology. The project focuses on the use of the AFM in order to morphologically and mechanically characterise cells and biomaterials demonstrating how versatile this instrument can be. The project is divided in the following parts:Part 1: establishment of AFM protocols for the nano-scale morphological and mechanical characterisation of soft and hard macroscopic substrates and of objects such as adsorbed nanoparticles. In particular, these techniques were tested on:Hyaluronic acid (HA)/poly(ethylene glycol) (PEG)-based hydrogels, which provide an artificial model for the mechanical behaviour of some biological tissues and organs. The elastic modulus, measured via AFM nanoindentation, of these hydrogels increased by decreasing the concentration and the molecular weight (MW) of HA in the hydrogels. We have then verified a clear relation between the mechanical properties of the hydrogels and the proliferation of cells cultured on them. Chitosan nanoparticle (popular carriers for the delivery of negatively charged macromolecular payloads, e.g. nucleic acids) cross-linked with triphosphate (TPP) and then coated with HA. We focussed on the influence of chitosan molecular weight (Mw) on nanoparticle properties. HA was able to penetrate into the more porous nanoparticles (high MW chitosan), whereas it formed a corona around the more cross-linked ones (low MW chitosan). AFM imaging was used to highlight the presence of this corona and also to estimate its apparent thickness to about 20-30 nm (in dry state).Silicone substrates modified with amphiphilic triblock copolymer (Sil-GMMA) layers. Extensive AFM (imaging and nanoindentation) provided evidence that silicone substrates are prevalently coated with Sil-GMMA thin layers that exhibit negligible hydrophobic recovery during drying and change the surface from more to less cell-adhesive. Part 2: AFM mechanical characterisation of fibroblast-to-myofibroblast differentiation process. Fibroblasts were stimulated to differentiate into myofibroblasts by Transforming Grow Factor β1 (TGFβ1) on hard substrate. AFM force maps performed both on fibroblasts (untreated cells) and myofibroblasts (TGFβ1-treated cells) revealed a significant increase in the elastic modulus in treated cells. Part 3: preparation and AFM characterisation of poly(ethylene glycol) diacrylate/acrylate (PEGDA/A) hydrogels. Since the mechanical properties of the substrate plays a pivotal role in fibroblast-to-myofibroblast differentiation process, hydrogels were prepared and characterised at the macro/nanoscale with AFM indentation, providing us with cell-adhesive substrates that cover a wide range of elastic modulus. These substrates are optimal candidates for future investigations to better understand and possibly control the differentiation process.
44

Self-assembly and gelation properties of novel peptides for biomedical applications

Gao, Jie January 2013 (has links)
The self-assembly peptide hydrogels used as tissue culture scaffolds have drawn great attention in recent years. They have the advantages of natural polymer hydrogels including biocompatibility, biodegradability and the advantages of synthetic materials such as controlled structural properties and mechanical properties. Furthermore, the bioactive ligands which can promote bioactivities and control cell behaviours can be easily introduced to the peptide backbone through peptide synthesis. One particular self-assembly FEFEFKFK peptide was chosen in this project.FEFEFKFK peptide used in this project has been reported to self-assemble in solution, forming hydrogels with a 3D fibrous network structure above a critical gelation concentration. In this project, the self-assembly and gelation properties of FEFEFKFK peptide were further investigated, assessing the effect of pH and ionic strength on the self-assembly and gelation behaviour. The biomimetic nanofibrous hydrogels of FEFEFKFK were also assessed for their ability to support human dermal fibroblast cells. The protocols of gel preparation were developed for both 2 dimensional (2D) and 3 dimensional (3D) cell culture. A short peptide sequence homoarginine-glycine-aspartate (hRGD) has been introduced onto the amide end of the self-assembly peptide instead of bioactive ligand arginine-glycine-aspartate (RGD), creating hydrogels with a fibrous network with functionalised groups at the fibre surface. The functionalised peptide hydrogels enhanced cell adhesion on gel surface, with cell interaction assessed using various imaging and spectroscopic techniques. A preliminary 3D cell culture study also showed potential of these peptide gels to be used for encapsulated human dermal fibroblast cell studies.
45

Development of Dual Setting Cement Systems as Composite Biomaterials with Ductile Properties / Entwicklung dual härtender Zemente als Komposit-Biomaterialien mit duktilen Eigenschaften

Rödel, Michaela January 2019 (has links) (PDF)
Synthetic bone replacement materials have their application in non-load bearing defects with the function of (re-)construction or substitution of bone. This tissue itself represents a biological composite material based on mineralized collagen fibrils and combines the mechanical strength of the mineral with the ductility of the organic matrix. By mimicking these outstanding properties with polymer-cement-composites, an imitation of bone is feasible. A promising approach for such replacement materials are dual setting systems, which are generated by dissolution-precipitation reaction with cement setting in parallel to polymerization and gelation of the organic phase forming a coherent hydrogel network. Hereby, the high brittleness of the pure inorganic network was shifted to a more ductile and elastic behavior. The aim of this thesis was focused on the development of different dual setting systems to modify pure calcium phosphate cements’ (CPCs’) mechanical performance by incorporation of a hydrogel matrix. A dual setting system based on hydroxyapatite (HA) and cross-linked 2-hydroxyethyl methacrylate (HEMA) via radical polymerization was advanced by homogenous incorporation of a degradable cross-linker composed of poly(ethylene glycol) (PEG) as well as poly(lactic acid) (PLA) with reactive terminal methacrylate functionalities (PEG-PLLA-DMA). By integration of this high molecular weight structure in the HEMA-hydrogel network, a significant increase in energy absorption (toughness) under 4-point bending testing was observed. An addition of only 10 wt% hydrogel precursor (referred to the liquid phase) resulted in a duplication of stress over a period of 8 days. Additionally, the calculated elasticity was positively affected and up to six times higher compared to pure HA. With a constantly applied force during compressive strength testing, a deformation and thus strain levels of about 10 % were reached immediately after preparation. For higher degradability, the system was modified in a second approach regarding organic as well as inorganic phase. The latter component was changed by brushite forming cement that is resorbable in vivo due to solubility processes. This CPC was combined with a hydrogel based on PEG-PLLA-DMA and other dimethacrylated PEGs with different molecular weights and concentrations. Hereby, new reaction conditions were created including a shift to acidic conditions. On this ground, the challenge was to find a new radical initiator system. Suitable candidates were ascorbic acid and hydrogen peroxide. that started the polymerization and successful gelation in this environment. These highly flexible dual set composites showed a very high ductility with an overall low strength compared to HA-based models. After removal of the applied force during compressive strength testing, a complete shape recovery was observed for the samples containing the highest polymeric amount (50 wt%) of PEG-PLLA-DMA. Regarding phase distribution in the constructs, a homogenously incorporated hydrogel network was demonstrated in a decalcifying study with ethylenediaminetetraacetic acid. Intact, coherent hydrogels remained after dissolution of the inorganic phase via calcium ion complexation. In a third approach, the synthetic hydrogel matrix of the previously described system was replaced by the natural biopolymer gelatin. Simultaneously to brushite formation, physical as well as chemical cross-linking by the compound genipin was performed in the dual setting materials. Thanks to the incorporation of gelatin, elasticity increased significantly, in which concentrations up to 10.0 w/v% resulted in a certain cohesion of samples after compressive strength testing. They did not dissociate in little pieces but remained intact cuboid specimens though having cracks or fissures. Furthermore, the drug release of two active pharmaceutical ingredients (vancomycin and rifampicin) was investigated over a time frame of 5 weeks. The release exponent was determined according to Korsmeyer-Peppas with n = 0.5 which corresponds to the drug liberation model of Higuchi. A sustained release was observed for the antibiotic vancomycin encapsulated in composites with a gelatin concentration of 10.0 w/v% and a powder-to-liquid ratio of 2.5 g/mL. With respect to these developments of different dual setting systems, three novel approaches were successfully established by polymerization of monomers and cross-linking of precursors forming an incorporated, homogenous hydrogel matrix in a calcium phosphate network. All studies showed an essential transfer of mechanical performance in direction of flexibility and bendability. / Synthetische Knochenersatzmaterialien finden ihre Anwendung im Bereich nicht lasttragender Defekte zum Wiederaufbau und Ersatz von defekter oder verlorener Knochensubstanz. Diese stellt aufgrund ihres Aufbaus aus mineralisierten Kollagen-Fibrillen selbst ein biologisches Komposit-Material dar, welches die mechanische Festigkeit des Minerals mit der Duktilität der organischen Matrix kombiniert. Eine Nachahmung dieser herausragenden Eigenschaften des Knochens wird im Sinne eines Ersatzmaterials durch geeignete Polymer-Zement-Komposite ermöglicht. Ein vielversprechender Ansatz für solche Komposite sind hierbei dual härtende Systeme, bei denen die Lösungs-Fällungs-Reaktion der Zementbildung parallel zur Polymerisation oder Gelierung der organischen Phase zu einem kohärenten Hydrogelnetzwerk abläuft. Die hohe Sprödigkeit und Bruchanfälligkeit rein anorganischer Netzwerke sollte dabei durch die Integration elastischer Polymerkomponenten hin zu mehr Flexibilität und Elastizität modifiziert werden. In der vorliegenden Arbeit wurden verschiedene dual härtende Hybrid-Materialien entwickelt, um etablierte Calciumphosphatzemente durch Einbringen von zusätzlicher Hydrogel-Matrizes bezüglich ihrer mechanischen Eigenschaften zu modifizieren. In ein dual härtendes System aus Hydroxylapatit (HA) und radikalisch vernetztem 2-Hydroxyethlymethacrylat (HEMA), wurde ein abbaubarer Cross-linker aus Polyethylenglykol (PEG) und Polymilchsäure (PLA)-Einheiten homogen inkorporiert, der mittels einer Reaktion der terminalen Methacrylatfunktionen (PEG-PLLA-DMA) zur Ausbildung der Vernetzungen führte und mittels PLLA hydrolytisch labile Esterbindungen ins System integrierte. Durch Einbringen dieser hochmolekularen Polymere in das engmaschige HEMA-Hydrogelnetzwerk kam es zu einer signifikanten Erhöhung der Energieaufnahme des Konstruktes unter 4-Punkt-Biegebelastung im Vergleich zum bereits etablierten System. Durch Zusatz von 10 Gew% hochmolekularem Hydrogel Präkursor (bezogen auf die flüssige Phase) konnte über einen Zeitraum von acht Tagen ein zweifach höherer Bruchwiderstand erhalten werden, verbunden mit einer bis zu sechsfach höheren Elastizität gegenüber reinem HA Zement. Zur Steigerung der Bioabbaubarkeit wurde in einem zweiten Ansatz durch Austausch der anorganischen Komponente mit einem in vivo leichter resorbierbaren Bruschit Zement das dual härtende System modifiziert. Dabei wurden dimethacrylierte PEGs verschiedener Molekulargewichte in unterschiedlichen Konzentrationen mit dem Zementpulver kombiniert. Die Reaktionsbedingungen im sauren Milieu erforderten den Austausch des radikalischen Initiator-Systems, wobei sich eine Kombination aus Ascorbinsäure und Wasserstoffperoxid als geeignet erwies. Die so erhaltenen dual härtenden Komposite zeigten eine sehr hohe Duktilität und Flexibilität bei insgesamt niedriger Festigkeit im Vergleich zu HA-basierenden Systemen. So fand im Druckversuch eine vollständige Relaxation zu den Ausgangsabmessungen des Prüfkörpers bei einem hohen Polymeranteil an PEG-PLLA-DMA (50 Gew%) statt. Die homogene Verteilung der inkorporierten Polymerphase wurde mittels Decalcifizierung durch Ethylendiamintetraessigsäure bewiesen. Hierbei wurden durchgängige Hydrogele nach Herauslösen der anorganischen Phase durch Komplexierung von Calcium-Ionen erhalten. Abschließend wurde die auf synthetischen Polymeren basierende Hydrogel-Matrix durch das natürliche Biopolymer Gelatine ersetzt. Neben der Bruschit-bildenden Zement-Reaktion wurde das Polymernetzwerk sowohl durch eine physikalische Gelierung als auch eine chemische Vernetzung mit Genipin stabilisiert. Durch die zusätzliche organische Phase wurden die Eigenschaften des Zementes hinsichtlich Elastizität erhöht, wobei bei einer Gelatine-Konzentration von 10,0 Gew% eine erneute Kohäsion der Prüfkörper nach mechanischer Druckbelastung beobachtet werden konnte. Diese zerfielen nicht in einzelne Teile, sondern wurden trotz Auftreten von Rissen als weitestgehend intakte Quader zusammengehalten. Weiterhin wurde die Wirkstoff-Freisetzung zweier antibiotisch aktiver Substanzen (Vancomycin und Rifampicin) über einen Zeitraum von fünf Wochen untersucht. Mittels Bestimmung des Freisetzungsexponenten nach Korsmeyer-Peppas konnte eine verzögerte Wirkstoffliberation für das Antibiotikum Vancomycin gemäß Wurzel-t-Kinetik (Higuchi-Modell) mit n = 0,5 für ein Pulverflüssigkeitsverhältnis von 2,5 g/mL bei einer Gelatinekonzentration von 10,0 Gew% erhalten werden. Im Hinblick auf die Entwicklung verschiedener Formulierungen als dual härtende Systeme wurden in der vorliegenden Arbeit drei Varianten etabliert, die durch Polymerisation von Monomeren beziehungsweise Hydrogel-Präkursoren zu einer inkorporierten, homogenen Hydrogel-Matrix im Calciumphosphatnetzwerk führten. Bei allen Ansätzen wurde ein wesentlicher Transfer der mechanischen Eigenschaften in Richtung Flexibilität und Biegsamkeit erzielt.
46

Protein Rejecting Hyaluronic Acid-Containing Hydrogel Materials

van Beek, Mark 11 1900 (has links)
Recently new contact lens materials have been introduced which are said to improve comfort by incorporating wetting agents either in a releasable or nonreleasable form. However, there is little information in the literature to demonstrate whether these claims are indeed true. In the present work, model lens materials based on poly(2-hydroxyethyl methacrylate) (pHEMA) and methacryloxypropyltris (trimethylsiloxy) silane(TRIS) were developed which incorporate releasable or crosslinked and therefore physically entrapped hyaluronic acid (HA) of various molecular weights as a wetting agent. Studies showed that uncrosslinked high molecular weight HA exhibited burst release kinetics with 80% release in less than 20 hours. While applicable for use in daily wear cycles, releasable wetting agents certainly would have very little effect on extended wear cycles, a common mode of wear. Protein adsorption results suggest however that the wetting agent resulted in no statistical change over the control material. Crosslinked and therefore physically entrapped HA, despite being only present in very small amounts, showed consistently lower water contact angles over four hours in comparison to controls, indicating that HA is present at the interface and was not being released over time. The presence of HA in the material was further confirmed by increases in the glass transition temperature measured by differential scanning calorimetry, increases in the stiffness as measured by Instron testing, and slight changes observed m both x-ray photoelectron spectroscopy and Fourier transform infrared spectra. This crosslinking procedure appeared to have no effect on optical transparency using 35 kDa HA whereas small decreases in optical transparency at higher wavelength were noted for the 169 kDa HA crosslinked material as measured by UV spectrophotometry. Most importantly, protein adsorption results indicated that the adsorption of all proteins studied was considerably decreased by the presence of the small amount of crosslinked HA. It is hypothesized that HA acts in a similar manner as PEO protein repulsion, where free HA chains are able to produce an environment which highly rejects protein adsorption. Significant decreases in lysozyme adsorption were also observed on model silicone hydrogel materials. The results suggest that these materials have significant potential for application in contact lens applications. / Thesis / Master of Applied Science (MASc)
47

In Situ Cross-Linking of Poly(vinyl alcohol)/Graphene Oxide–Polyethylene Glycol Nanocomposite Hydrogels as Artificial Cartilage Replacement: Intercalation Structure, Unconfined Compressive Behavior, and Biotribological Behaviors

Meng, Y., Coates, Philip D., Twigg, Peter C. 16 January 2018 (has links)
Yes / Poly(vinyl alcohol) (PVA)/graphene oxide (GO) nanocomposite hydrogel as artificial cartilage replacement was prepared via freezing/thawing method by introducing polyethylene glycol (PEG). Efficient grafting of PVA molecules onto GO surface was realized by formation of hydrogen bonding, resulting in exfoliation and uniform distribution of GO in PVA matrix. By introduction of appropriate content of GO, the increased crystalline regions of PVA and the formation of GO centered second network structure led to the increase of the storage modulus and effective cross-linking density. And therefore the mechanical strength and toughness of the composite hydrogel were improved simultaneously: the tensile strength, elongation at break, and compressive modulus showed approximately 200%, 40%, and 100% increase of the neat PVA hydrogel. Besides, for the sample with 1.5 wt % GO content, the maximum force retention and dynamic stiffness were improved remarkably in the process of sinusoidal cyclic compression, and the compressive relaxation stress also increased significantly, indicating the enhancement of the compressive recoverable and antifatigue ability, and resistance to compressive relaxation by formation of high load-bearing, dense, and reinforcing double network structure. Moreover, more than 50% decrease in coefficient of friction was obtained for the composite hydrogel, and the worn surface presented relative smooth and flat features with sharp decreasing furrow depth, confirming the lubrication effect of GO-PEG. This study shows promising potentials in developing new materials for cartilage replacement with simultaneous combination of high mechanical property and excellent lubrication.
48

Electrokinetic Detection of Sepsis Biomarkers in Dehydrated/Rehydrated Hydrogel

Shahriari, Shadi January 2024 (has links)
According to the third international consensus definition (sepsis-3), sepsis is characterized as life-threatening organ dysfunction resulting from an uncontrolled host response to infection. Sepsis stands as a prominent contributor to worldwide mortality. A study revealed approximately 50 million reported cases of sepsis and 11 million associated deaths worldwide, constituting nearly 20% of all global fatalities. Various biomarkers have been investigated for sepsis prognosis including Procalcitonin (PCT), C-reactive protein (CRP), interleukin-1β (IL-1β), interleukin-6 (IL-6), and protein C. In addition to proteomic markers genomic biomarkers have also been investigated for sepsis. For instance, research indicates a substantial rise in plasma cell-free DNA (cfDNA) and total circulating histones levels during sepsis, correlating with its severity and mortality. The complexity arises in creating a measurement tool for sepsis, given the diverse nature of these biomarkers, each requiring distinct detection methods. The objective of this doctoral thesis is to develop a low-cost fully integrated microfluidic device for detecting a genomic biomarker (cfDNA) and a proteomic biomarker (total circulating histones) using a new method for integration of hydrogels inside microfluidic devices during the fabrication process. This method involves using porous and fibrous membranes as scaffolds to support gels. The scaffold facilitates the drying and reconstitution of these gels without any loss of shape or leakage, making it advantageous in various applications, especially in point-of-care (POC) devices where long-term storage of gels inside the device is required. This hydrogel integration method was applied to demonstrate gel electrophoretic concentration and isoelectric trapping of cfDNA and histones respectively in rehydrated agarose gates with proper pH embedded in a porous membrane in a microfluidic device. Then, these two detections were performed in a single fully integrated microfluidic device. Additionally, nonspecific fluorescent dyes were incorporated within the device, eliminating the necessity for off-chip sample preparation. This enables direct testing of plasma samples without the need to label DNA and histones with fluorescent dyes beforehand. In all the fabrication steps of the microfluidic device, xurography, a cost-effective and rapid fabrication method, was utilized. This device demonstrated the effective separation of cfDNA and histones in the agarose gates in a total time of 20 minutes, employing 10 and 30 Volts for cfDNA and histone accumulation, respectively. This device could be further developed to create a POC device for the quantification of cfDNA and histones simultaneously in severe sepsis patients plasma sample. / Thesis / Doctor of Philosophy (PhD)
49

Studies On Polymer Hydrogel Electrolytes For Application In Electrochemical Capacitors And Direct Borohydride Fuel Cells

Choudhury, Nurul Alam 10 1900 (has links)
In recent years, electrochemical capacitors have emerged as devices with the potential to enable major advances in electrical energy storage. Electrochemical capacitors (ECs) are akin to conventional capacitors but employ higher surface-area electrodes and thinner dielectrics to achieve larger capacitances. This helps ECs to attain energy densities greater than those of conventional capacitors and power densities greater than those of batteries. Akin to conventional capacitors, ECs also have high cycle-lives and can be charged and discharged rapidly. But ECs are yet to match the energy densities of mid to high-end batteries and fuel cells. On the basis of mechanism involved in the charge-storage process, ECs are classified as electrical double-layer capacitors (EDLCs) or pseudocapacitors. Charge storage in EDLCs and pseudocapacitors is brought about by non-faradaic and faradaic processes, respectively. Faradaic process, such as an oxidation-reduction reaction, involves the transfer of charge between electrode and electrolyte. By contrast, a non-faradaic process does not use a chemical mechanism and charges are distributed on surfaces by physical processes that do not involve any chemical reaction. ECs employ both aqueous and non-aqueous electrolytes in either liquid or solid form, the latter providing the advantages of freedom from leakage of any liquid component, compactness, reliability and large operating potential-window. In the literature, polymer electrolytes are the most widely studied solid electrolytes. Complexation of functional-groups of certain polymers with cations results in the formation of polymer-cation complexes commonly referred to as solid-polymer electrolytes (SPEs). Mixing a polymer with an alkali metal salt dissolved in an organic solvent result in the formation of a polymer gel electrolyte. Organic solvents with low molecular-weights, such as ethylene carbonate and propylene carbonate, employed in polymer gel electrolytes are commonly referred to as plasticizers. When water is used as a plasticizer, the polymer electrolyte is called a polymer hydrogel electrolyte. Part I of the thesis is directed to studies pertaining to Polymer Hydrogel Electrolytes for Electrochemical Capacitors and comprises four sections. After a brief survey of literature on polymer hydrogel electrolytes employed in ECs in Section I.1, Section I.2 of Part I describes the studies on electrochemical capacitors employing cross-linked poly (vinyl alcohol) hydrogel membrane electrolytes with varying perchloric acid dopant concentration. Acidic poly (vinyl alcohol) hydrogel membrane electrolytes (PHMEs) with different perchloric acid concentrations are prepared by cross-linking poly (vinyl alcohol) with glutaraldehyde in the presence of a protonic acid acting as a catalyst under ambient conditions. PHMEs are characterized by scanning electron microscopy and temperature-modulated differential scanning calorimetry in conjunction with relevant electrochemical techniques. An optimised electrochemical capacitor assembled employing PHME in conjunction with black pearl carbon (BPC) electrodes yields a maximum specific capacitance value of about 96 F g-1, phase angle value of about 79o and a discharge capacitance value of about 88 F g-1. Section I.3 of Part I describes the studies on cross-linked poly (vinyl alcohol)/ploy (acrylic acid) blend hydrogel electrolytes for electrochemical capacitors. Acidic poly (vinyl alcohol)/poly (acrylic acid) blend hydrogel electrolytes (BHEs) have been prepared by cross-linking poly (vinyl alcohol)/poly (acrylic acid) blend with glutaraldehyde in presence of perchloric acid. These acidic BHEs have been treated suitably to realize alkaline and neutral BHEs. Thermal characteristics and glass-transition behavior of BHEs have been followed by differential scanning calorimetry. Ionic conduction in acidic BHEs has been found to take place by Grötthus-type mechanism while polymer segmental motion mechanism is predominantly responsible for ion motion in alkaline and neutral BHEs. Ionic conductivity of BHEs has been found to range between 10-3 and 10-2 S cm-1 at 298 K. Electrochemical capacitors assembled with acidic PVA hydrogel electrolyte yield a maximum specific capacitance of about 60 and 1000 F g-1 with BPC and RuOx.xH2O/C electrodes, respectively. Section I.4 of Part I describes the studies on gelatin hydrogel electrolytes and their application to electrochemical capacitors. Gelatin hydrogel electrolytes (GHEs) with varying NaCl concentrations have been prepared by cross-linking an aqueous solution of gelatin with aqueous glutaraldehyde under ambient conditions, and characterized by scanning electron microscopy, temperature-modulated differential scanning calorimetry, cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic chronopotentiometry. Glass transition temperatures for GHEs range between 340 and 377 K depending on the dopant concentration. Ionic conductivity behavior of GHEs is studied with varying concentrations of gelatin, glutaraldehyde and NaCl, and conductivity values are found to vary between 10-3 and 10-1 S cm-1 under ambient conditions. GHEs have a potential window of about 1 V with BPC electrodes. The ionic conductivity of pristine and 0.25 N NaCl-doped GHEs follows Arrhenius behavior with activation energy values of 1.9×10-4 and 1.8×10-4 eV, respectively. Electrochemical capacitors employing GHEs in conjunction with black pearl carbon electrodes are assembled and studied. Optimal values for capacitance, phase angle, and relaxation time constant of about 81 F g-1, 75o, and 0.03 s are obtained for 3 M NaCl-doped GHE, respectively. EC with pristine GHE exhibits continuous cycle life for about 4.3 h as against 4.7 h for the electrochemical capacitor with 3 M NaCl-doped GHE. Unlike electrochemical capacitors, fuel cells do not store the charge internally but instead use a continuous supply of fuel from an external storage tank. Thus, fuel cells have the potential to solve the most challenging problem associated with the electrochemical capacitors, namely their limited energy-density. A fuel cell is an electrochemical power source with advantages of both the combustion engine and the battery. Like a combustion engine, a fuel cell will run as long as it is provided with fuel; and like a battery, fuel cells convert chemical energy directly to electrical energy. As an electrochemical power source, fuel cells are not subjected to the Carnot limitations of combustion (heat) engines. A fuel cell operates quietly and efficiently and, when hydrogen is used as a fuel, it generates only power and potable water. Thus, a fuel cell is a so called ‘zero-emission engine’. In the past, several fuel cell concepts have been tested in various laboratories but the systems that are being potentially considered for commercial developments are: (i) Alkaline Fuel Cells (AFCs), (ii) Phosphoric Acid Fuel Cells (PAFCs), (iii) Polymer Electrolyte Fuel Cells (PEFCs), (iv) Solid-Polymer-Electrolyte-Direct Methanol Fuel Cells (SPE-DMFCs), (v) Molten Carbonate Fuel Cells (MCFCs) and (vi) Solid Oxide Fuel Cells (SOFCs). Among the aforesaid systems, PEFCs that employ hydrogen as fuel are considered attractive power systems for quick start-up and ambient-temperature operations. Ironically, however, hydrogen as fuel is not available freely in the nature. Accordingly, it has to be generated from a readily available hydrogen carrying fuel such as natural gas, which needs to be reformed. But, such a process leads to generation of hydrogen with some content of carbon monoxide, which even at minuscule level is detrimental to the fuel cell performance. Pure hydrogen can be generated through water electrolysis but hydrogen thus generated needs to be stored as compressed / liquefied gas, which is cost-intensive. Therefore, certain hydrogen carrying organic fuels such as methanol, ethanol, propanol, ethylene glycol, and diethyl ether have been considered for fuelling PEFCs directly. Among these, methanol with a hydrogen content of about 13 wt. % (specific energy = 6.1 kWh kg-1) is the most attractive organic liquid. PEFCs using methanol directly as fuel are referred to as SPE-DMFCs. But SPE-DMFCs suffer from methanol crossover across the polymer electrolyte membrane, which affects the cathode performance and hence the cell performance during its operation. SPE-DMFCs also have inherent limitations of low open-circuit-potential and low electrochemical-activity. An obvious solution to the aforesaid problems is to explore other promising hydrogen carrying fuels such as sodium borohydride, which has a hydrogen content of about 11 wt. %. Such fuel cells are called direct borohydride fuel cells (DBFCs). Part II of the thesis includes studies on direct borohydride fuel cells and comprises three sections. After a brief introduction to DBFCs in section II.1, Section II.2 describes studies on an alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant. A peak power density of about 150 mW cm-2 at a cell voltage of 540 mV could be achieved from the optimized DBFC operating at 70oC. Section II.3 describes studies on poly (vinyl alcohol) hydrogel membrane as electrolyte for direct borohydride fuel cells. This DBFC employs a poly (vinyl alcohol) hydrogel membrane as electrolyte, an AB5 Misch metal alloy as anode, and a gold-plated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium borohydride as fuel and aqueous acidified solution of hydrogen peroxide as oxidant. The performance of the PHME-based DBFC in respect of peak power outputs, ex-situ cross-over of oxidant, fuel, anolyte and catholyte across the membrane electrolytes, utilization efficiencies of fuel and oxidant as also cell performance durability under ambient conditions are compared with a similar DBFC employing a Nafion®-117 membrane electrolyte (NME). Peak power densities of about 30 and 40 mW cm-2 are observed for the DBFCs with PHME and NME, respectively. The PHME and NME-based DBFCs exhibit cell potentials of about 1.2 and 1.4 V, respectively, at a load current density of 10 mA cm-2 for 100 h. Publications of Nurul Alam Choudhury 1. Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors, N. A. Choudhury, S. Sampath, and A. K. Shukla, J. Electrochem. Soc., 155 (2008) A74. 2. Cross-linked polymer hydrogel electrolytes for electrochemical capacitors, N. A. Choudhury, A. K. Shukla, S. Sampath, and S. Pitchumani, J. Electrochem. Soc., 153 (2006) A614. 3. Hydrogel-polymer electrolytes for electrochemical capacitors: an overview, N. A. Choudhury, S. Sampath, and A. K. Shukla, Energy and Environmental Science (In Press). 4. Cross-linked poly (vinyl alcohol) hydrogel membrane electrolytes with varying perchloric acid dopant concentration and their application to electrochemical capacitors, N. A. Choudhury, S. Sampath, and A. K. Shukla, J. Chem. Sc. (Submitted) 5. An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant, N. A. Choudhury, R. K. Raman, S. Sampath, and A. K. Shukla, J. Power Sources, 143 (2005) 1. 6. Poly (vinyl alcohol) hydrogel membrane as electrolyte for direct borohydride fuel cells, N. A. Choudhury, S. K. Prashant, S. Pitchumani, P. Sridhar, and A. K. Shukla, J. Chem. Sc. (Submitted). 7. A phenyl-sulfonic acid anchored carbon-supported platinum catalyst for polymer electrolyte fuel cell electrodes, G. Selvarani, A. K. Sahu, N. A. Choudhury, P. Sridhar, S. Pitchumani, and A. K. Shukla, Electrochim. Acta, 52 (2007) 4871. 8. A high-output voltage direct borohydride fuel cell, R. K. Raman, N. A. Choudhury, and A. K. Shukla, Electrochem. Solid-State Lett., 7 (2004) A 488. 9. Carbon-supported Pt-Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells, A. K. Shukla, R. K. Raman, N. A. Choudhury, K. R. Priolkar, P. R. Sarode, S. Emura, and R. Kumashiro, J. Electroanal. Chem., 563 (2004) 181.
50

Exploring complex interactions within microgels and microgel assemblies

Herman, Emily Sue 12 January 2015 (has links)
Hydrogels are water-swellable cross-linked polymeric networks that are capable of incorporating a variety of functionalities and responsivities. The stable colloidal form of a hydrogel is known as a microgel and ranges in size from the nano- to the micrometer scale. Microgels can exhibit similar properties to hydrogels, but the colloidal size of the microgel creates differences in their responsive behavior, such as faster reaction kinetics, as compared to their macrogel counterpart. Microgels have been explored for a broad range of applications, either as individual entities or within large scale assemblies. Although these materials have shown a great deal of utility and versatility, microgels have also demonstrated a great deal of complexity due to the fact that they exhibit both polymeric and colloidal properties. This so-called polymer/colloid duality creates intricacies in characterizing the behavior of these materials, especially when coupled with an oppositely charged component within multilayered assemblies. In this dissertation, work is focused primarily on building a greater fundamental understanding of microgels and their behavior within large scale assemblies. This is done through the development of new characterization techniques or through a direct visualization of the interactions of microgels with their surrounding environment with emphasis on their interaction with an oppositely charged linear polyelectrolyte. From these studies, a more developed fundamental understanding of microgels and their assembly into complex structures is obtained, and these findings will aide in the development of future applications of microgel assemblies.

Page generated in 0.4371 seconds