• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ingénierie d'un nouveau nanobiohybride à base de nanorubans de titanates pour la médecine régénérative / New nanobiohybrid engineering composed of titanate nanoribbons for regenerative medicine

Bellat, Vanessa 20 November 2012 (has links)
Ce travail de recherche est consacré à l’ingénierie d’un nouveau nanobiohybride à base de nanorubans de titanates pour la médecine régénérative. Dans un premier temps, les nanorubans ont été synthétisés par traitement hydrothermal et leurs caractéristiques morphologiques, structurales et chimiques ont été définies. Une caractérisation fine par différentes techniques de microscopie électronique à transmission a notamment permis de déterminer leur épaisseur; dimension qui n’avait encore jamais été mesurée. Par la suite, les nanorubans de titanates ont été fonctionnalisés par différents PEG hétérobifonctionnels préalablement synthétisés au laboratoire. Ces polymères présentent à l’une de leurs extrémités des groupements fonctionnels spécifiques pouvant se coupler à de nombreuses molécules biologiques. Des peptides de type collagène contenant des sites de reconnaissance cellulaire ont alors été greffés sur ces extrémités. Le nanobiohybride ainsi formé devra permettre l'adhésion et la prolifération des cellules favorisant in fine la cicatrisation et la régénération tissulaire. Pour évaluer les propriétés biologiques du nouveau nanobiohybride, la cytoxicité et le pouvoir agrégeant des nanorubans de titanes ont été déterminés par des tests MTT, réalisés sur deux populations de cellules (cardiomyocytes et fibroblastes) et par des tests d’agrégation plaquettaire (sang humain). Enfin, dans le cas d’une utilisation pour favoriser le processus de cicatrisation, le nouveau nanobiohybride a été formulé sous forme d’un hydrogel d’alginate de sodium permettant une application directe sur les tissus lésés. Pour confirmer l’intérêt de cette formulation galénique, des premiers tests in vivo ont été réalisés / This research work is devoted to new nanohybrid engineering composed of titanate nanoribbons for regenerative medicine. Over a first phase, nanoribbons were synthesized by hydrothermal treatment and their morphological, structural and chemical features were defined. A fine characterization by means of different techniques of transmission electron microscopy mainly enabled to determine their thickness; dimension which had never been measured so far. Subsequently, titanate nanoribbons were functionalized by different home-made heterobifunctional PEG. Those polymers present at one of their extremities specific functional groups being able to couple with numerous biological molecules. Some collagen type peptides containing cellular recognition sites were grafted onto those extremities. The so-formed nanobiohybrid will permit cellular adhesion and proliferation favouring in fine tissue healing and regeneration. To evaluate new nanohybrid biological properties, titanate nanoribbons cytoxicity and aggregating power were determined by MTT tests, performed on two cell populations (fibroblasts and cardiomyocytes) and platelet aggregation tests (human blood). Finally, when used to promote healing process, the new nanobiohybrid was formulated in the form of sodium alginate hydrogel permitting a direct application on damaged tissues. To confirm the interest of this galenic form, initial in vivo tests were realized
2

Structuration et contrôle de l’architecture de capsules à coeur liquide à base d’hydrogel d’alginate par association de biopolymères / Structuring and control of the architecture of alginate liquid-core capsules by biopolymers association

Ben Messaoud, Ghazi 29 October 2015 (has links)
Cette thèse a pour objectif d’étudier les propriétés physico-chimiques de capsules à cœur liquide à base d'hydrogel d'alginate et de contrôler leur perméabilité et propriétés mécaniques par ajout des biopolymères. Ces capsules sont préparées par un procédé de sphérification inverse par extrusion goutte à goutte d’une solution de chlorure de calcium dans un bain à base d’alginate. Dans un premier travail, l’influence des polymères utilisés pour contrôler la viscosité du cœur liquide lors de la préparation des capsules sur la perméabilité et la stabilité mécanique a été étudiée. Les propriétés mécaniques des capsules ont été corrélées avec les propriétés viscoélastiques d’hydrogels d’alginate caractérisés par rhéologie oscillatoire aux faibles amplitudes. Un second travail, a consisté à élaborer des capsules composites avec une membrane de caséinate de sodium/alginate qui présentent une meilleure stabilité et une libération pH-dépendante d’un colorant utilisé comme molécule modèle. Comme perspective a cette étude, des hydrogels sphériques à base d’alginate et de caséinate de sodium, avec différentes architecture ont été développés et leur efficacité a été testée sur trois colorants. Enfin, l’influence de l’incorporation de la gomme laque dans la membrane ou comme revêtement externe a permis de mettre en évidence une amélioration des propriétés barrières vis-à-vis de molécules de faible masse moléculaire (riboflavine dans ce cas). Les capsules à base d’alginate ont un large spectre d’utilisation allant de la cuisine moléculaire à la biotechnologie ce qui nécessite une meilleure compréhension et contrôle de leurs propriétés physicochimiques en fonction de l’application visée / The aim of this thesis is to study the physicochemical properties of alginate liquid-core capsules and to control their permeability and mechanical properties by biopolymers blending. These millimeter-scale size capsules are prepared by a reverse spherification process by dripping a solution of calcium chloride into an alginate gelling bath. In a first work, the influence of polymers used to control capsule liquid-core viscosity (thickening agent) during capsules preparation on permeability and mechanical stability of the alginate membrane was investigated. The mechanical properties of capsules were correlated with viscoelastic properties of plane alginate hydrogels characterized by small amplitude oscillatory shear rheology. In a second work, composite capsules with a membrane of sodium caseinate / alginate were developed and showed improved stability and pH-dependent release of a dye used as a model molecule. As a perspective, composite alginate/sodium caseinate microspheres with different architectures were developed and their effectiveness was tested against three anionic dyes. This type of system has applications in the removal of dyes from industrial wastewater by an adsorption mechanism. Finally, the influence of shellac incorporation in alginate membrane or as an external coating layer resulted in enhanced physicochemical properties and decreased membrane permeability against low molecular weight molecules (riboflavin in this case). Alginate capsules have a wide range of applications ranging from molecular gastronomy to biotechnology which requires a better understanding and control of their physicochemical properties according to the target application
3

Évaluation des caractéristiques des hydrogels d’alginate supplémentés en acide hyaluronique ou en hydroxyapatite lors de la différenciation des cellules souches mésenchymateuses issues de la gelée de Wharton / Evaluation of characteristics of alginate/hyaluronic acid and alginate/hydroxyapatite hydrogels during differentiation of Wharton's Jelly mesenchymal stem cells

Yu, Hao 18 July 2017 (has links)
Dans le domaine de l'ingénierie du cartilage, les hydrogels à base d'alginate (Alg) et de cellules souches mésenchymateuses (CSM) sont utilisés comme biomatériaux pouvant être utilisés pour combler des lésions cartilagineuses plus ou moins profondes. Cependant, pour reproduire l’organisation zonale du cartilage, des biomatériaux multiphasiques sont nécessaires. Afin de guider la différenciation des CSM dans les différentes strates du biomatériau, sans apports de facteurs de croissance, des composants naturels du cartilage (acide hyaluronique, HA) ou de la matrice osseuse (hydroxyapatite, Hap) peuvent être ajoutés à l’alginate. L’objectif de ce travail de thèse consiste à analyser l’impact de la composition de biomatériaux à base d’alginate enrichi soit en HA soit en Hap sur le comportement des CSM. La première partie de notre travail à consister à évaluer le comportement des CSM issues de la gelée de Wharton dans ces hydrogels. Nos résultats mettent en évidence que les hydrogels d’Alg/Hap possèdent non seulement de meilleures propriétés mécaniques que les hydrogels Alg/HA et favorisent la viabilité des CSM ainsi que leur différenciation par rapport aux CSM ensemencées dans un hydrogel d’Alg/HA. La méthode de stérilisation du biomatériau représente une étape incontournable, dont on doit impérativement évaluer les multiples effets, en particulier pour ce qui touche au comportement des cellules, mais aussi au maintien de l’intégrité des propriétés physicochimiques de l'hydrogel. Ainsi, dans une seconde partie du travail, nous avons montré que le traitement de stérilisation par autoclave induisait un effet négatif sur les caractéristiques initiales de l'hydrogel à base d'alginate. Il ressort également de cette investigation sur les modes de stérilisation, que la stérilisation des hydrogels avec des UV est plus efficace et permet de préserver au mieux les propriétés spécifiques de l'hydrogel, notamment de l’Alg/HA. Enfin, dans une troisième partie de notre travail, nous avons évalué l’évolution des propriétés mécaniques au cours de la différenciation et l’impact de celles-ci sur la différenciation des CSM ainsi que sur leurs propriétés immunomodulatrices. À partir de ces résultats, nous avons montré que les caractéristiques physico-chimiques des hydrogels d’Alg/ha et Alg/hap influençaient non seulement le potentiel de différenciation des CSM-GW mais également la sécrétion des facteurs solubles impliqués dans l’immunomodulation. Ces propriétés physico-chimiques étant influencées dès le procédé de stérilisation, il est alors conseillé de les prendre en compte dans toutes les étapes de l’ingénierie tissulaire / In the field of cartilage engineering, alginate (Alg)-based hydrogels and mesenchymal stem cells (MSC) are widely used as raw biomaterials and stem cells which can be used to fill cartilage lesions of varying depth. However, to reproduce the zonal organization of articular cartilage, a graft multilayer is necessary. In order to guide the differentiation of MSCs in different strata of the biomaterials, without input of growth factors, natural cartilage components (hyaluronic acid, HA) or bone matrix (hydroxyapatite, Hap) can be added into the alginate. The aim of this work is to analyze the impact of the composition of alginate enriched either in HA or in Hap on the behavior of MSCs. The first part of our work is to evaluate the behavior of WJ-MSCs into these hydrogels. Our results have shown that Alg/ Hap hydrogels not only possess better mechanical properties than Alg/HA hydrogels, but also promote the viability of MSCs and their differentiation from MSC seeded into the Alg/HA hydrogel. The sterilization method of biomaterial is an essential step, the multiple effects of which must be evaluated, in particular as regards the behavior of the cells, but also to maintain the integrity of the physicochemical properties of hydrogel. Thus, in a second part of this work, we showed that the autoclave sterilization treatment induced a negative effect on the initial characteristics of alginate hydrogel. It is also apparent from this investigation of the sterilization modes that the sterilization of hydrogels with UV is more efficient and makes it possible to preserve the specific properties of the hydrogel as best as possible, in particular Alg/HA. Finally, in a third part of our work, we also evaluated the evolution of the mechanical properties during the differentiation and the impact of these on the differentiation of MSCs and their immunomodulatory properties. From these results, we have shown that the physico-chemical characteristics of Alg / ha and Alg/hap hydrogels influence not only the differentiation potential of WJ-MSC but also the secretion of soluble factors involved in immunomodulation. Since these physicochemical properties are influenced by the sterilization process, it is advisable to take them into account in all stages of tissue engineering

Page generated in 0.0446 seconds