• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 410
  • 97
  • 69
  • 45
  • 38
  • 33
  • 20
  • 12
  • 11
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 855
  • 165
  • 101
  • 98
  • 88
  • 82
  • 72
  • 70
  • 64
  • 64
  • 59
  • 59
  • 58
  • 57
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

HYDROGEL BASED MEMBRANES FOR BIOPHARMACEUTICAL AND BIOMEDICAL APPLICATIONS

YOO, SEUNG MI January 2014 (has links)
Membrane technology has been actively used as a separation tool in the chemical, environmental, and biopharmaceutical industries for several decades. As membrane quality requirement in the industry has increased, efforts have been directed towards enhancement in mechanical strength, chemical durability and functionality of membranes. One of the approaches for membrane quality enhancement is based on the combination of hydrogel technology with membrane technology. This thesis focused on the application and development of hydrogel based membranes, notably hydrophilized PVDF (polyvinylidene fluoride) membrane for hydrophobic interaction membrane chromatography; the fabrication of paper-hydrogel composite membranes for membrane chromatography; development of a technique for coating alginate (a natural hydrogel) on the outer surface of a hollow fiber membrane for potential application in bioreactors and the use of hollow fiber membranes as mold for fabrication calcium alginate fibers for biomedical and tissue engineering applications. A membrane chromatography-based polishing technique was developed for removing leached protein-A and aggregates from monoclonal antibody (mAb). A commercial synthetic membrane that is known to be hydrophilized by hydrogel grafting was employed to develop this polishing process that resulted in highly pure mAb, free from aggregates and protein-A. This mAb polishing technique could easily be integrated with a hydrophobic interaction membrane chromatography based mAb purification process. A paper-hydrogel composite membrane was developed as an inexpensive alternative to commercial synthetic membranes used for carrying hydrophobic interaction membrane chromatography. Poly(N-vinylcaprolactam) or PVCL hydrogel was coated on Whatman filter paper to prepare these membranes. These environment responsive membrane which responded to changes in salt concentration, gave excellent fractionation of multi-component protein mixtures. As case study, a mixture of immunoglobulin G, human serum albumin and insulin was fractionated. A technique for modifying the surface of synthetic hollow fiber membranes with alginate (a natural hydrogel) was developed. This manner of surface modification led to the improvement in membrane mass transport. The alginate was cross-linked on the outer surface of the membrane by diffusion of the cross-linker (calcium ions) through the membrane pores. The calcium alginate coating layer was characterized by optical and transmission electron microscopy, contact angle measurement, hydraulic permeability measurement and by examining solute transport. Hollow and solid calcium alginate fibers were fabricated using a novel hollow fiber membrane based moulding technique. The pore present on the hollow fiber membrane served as the reservoir for the calcium chloride solution with cross-linked the alginate within the lumen. The calcium alginate fibers produced were characterized by optical, transmission electron, and scanning electron microscopy. Cell immobilization experiments were carried out to demonstrate biocompatibility and potential for tissue engineering applications. / Thesis / Doctor of Philosophy (PhD)
112

Injectable Interpenetrating Network Hydrogels for Biomedical Applications

Gilbert, Trevor January 2017 (has links)
Interpenetrating polymer networks (IPN’s) consist of two overlapping cross-linked networks that are not bonded to each other. Hydrogel IPN’s are of application interest due to properties such as mechanical reinforcement, modulated drug release and biodegradation kinetics, dual polymer activities in vivo, and novel nanostructured morphologies. Prior IPN hydrogels reported in the literature either required surgical implantation (disadvantageous for several reasons) or were polymerized in situ (limited to a small subset of biologically safe chemistries). Alternatively, we formed IPN’s using a mixing injector to deliver orthogonally reactive functionalized prepolymer solutions that gel upon contact. Specifically, we use hydrazone chemistry to gel a thermosensitive poly(N-isopropylacrylamide) (PNIPAM) network and kinetically orthogonal thiosuccinimide or disulfide chemistry to cross-link a second network of hydrophilic poly(vinylpyrrolidone) (PVP). The resulting IPN’s preserve the thermoresponsive properties of the PNIPAM constituent but exhibit slower, smaller, and more reversible transitions due to entanglement with the highly hydrophilic PVP network (potentially useful to reduce the problem of burst release in thermoresponsive drug delivery systems). Mechanical reinforcement was evidenced by the increased shear storage modulus of IPN composites relative to the sum of the individual component moduli, particularly so in IPN’s employing the thiosuccinimide-cross-linked PVP. The nanostructure of the IPN hydrogels was further studied using small angle neutron scattering with contrast matching, and was found to combine features characteristic to each single network component (PNIPAM-rich static domains embedded in PVP-rich fractal clusters). However, our results suggest some slight changes to their scattering profiles, indicative of partial mixing or influence of each network structure upon the other. Corroborating investigations with single-molecule super-resolution fluorescence microscopy, operating at a slightly larger length scale, show the formation of separate populations of mixed and individual domains or clusters of each polymer type. These properties suggest such injectable IPN’s for further investigation as prospective biomaterials. / Thesis / Doctor of Philosophy (PhD) / This thesis describes the development of overlapping but unconnected polymer networks formed by mixing of completely injectable polymer precursors. The interlocking pair of networks is based on one component that shrinks upon heating and the other component that offers the potential for biological adhesion. Entanglement between the two components renders them mutually reinforcing and changes the shrinking and reswelling behaviour of the temperature-responsive component. The structure of the composite network is also distinctive from either individual component, forming alternating, unevenly mixed regions richer in one or the other component. The composite’s properties are attractive for a potential bioadhesive drug delivery carrier and, in the future, a possible wound closure biomaterial.
113

Encapsulation of rolling circle amplification product in hydrogel systems for applications in biosensing

Emerson, Sophia January 2019 (has links)
The development of easily fabricated, highly stable DNA-based microarray and continuous flow concentrating devices is vital for several biomedical and environmental applications. Nucleic acid biosensors can be used for genetic analysis, disease diagnosis, drug discovery, food and water quality control and more, however methods of fabrication are tedious, and the longevity of sensors is compromised by the fragility of the sensing component. In this report, the fabrication and characterization of two biosensing modalities – microarrays and microgels – composed of Rolling Circle Amplification (RCA) product in poly(oligoethylene glycol methacrylate) (POEGMA) hydrogels are investigated. RCA product microarrays were developed by the sequential printing of aldehyde and hydrazide functionalized POEGMA precursors on nitrocellulose paper, exploiting rapid gelling via hydrazone crosslinking to generate thin film hydrogel sensing arrays. POEGMA/RCA product microgels for affinity column applications were synthesized using an inverse emulsion polymerization technique. Inkjet printing evenly deposited RCA product in all wells, with POEGMA effectively stabilizing DNA on the cellulose substrate. Hybridization of complementary probe to the encapsulated RCA product was optimized, yielding a signal to noise ratio of ~4 for a large range of probe concentrations. Microgels were successfully synthesized in the size range of 10-60 μm diameter, and a linear model that can accurately predict size based on initiator and emulsifier concentration was developed. The encapsulation efficiency of RCA product in different sized microgels was explored, with larger microgels entrapping more product and the highest encapsulation efficiency calculated at 56%. These results demonstrate that POEGMA hydrogels can be utilized to encapsulate and stabilize RCA product in two distinct structures, providing a basis for the development of easily fabricated biosensors for more specific applications. / Thesis / Master of Applied Science (MASc)
114

Linear Multifunctional PEG-Alternatives for Bioconjugation and Hydrogel Formation / Lineare Multifunktionelle PEG-Alternativen für Biokonjugation und Hydrogelbildung

Smolan, Willi January 2022 (has links) (PDF)
The objective of this thesis was the synthesis and characterisation of two linear multifunctional PEG-alternatives for bioconjugation and hydrogel formation: i) Hydrophilic acrylate based copolymers containing peptide binding units and ii) hydrophilic polyether based copolymers containing different functional groups for a physical crosslinking. In section 3.1 the successful synthesis of water soluble and linear acrylate based polymers containing oligo(ethylene glycol) methyl ether acrylate with either linear thioester functional 2-hydroxyethyl acrylate, thiolactone acrylamide, or vinyl azlactone via the living radical polymerisation technique Reversible Addition Fragmentation Chain Transfer (RAFT) and via free-radical polymerisation is described. The obtained polymers were characterized via GPC, 1H NMR, IR and RAMAN spectroscopy. The RAFT end group was found to be difficult to remove from these short polymer chains and accordingly underwent the undesired side reaction aminolysis with the peptide during the conjugation studies. Besides that, polymers without RAFT end groups did not show any binding of the peptide at the thioester groups, which can be improved in future by using higher reactant concentrations and higher amount of binding units at the polymer. Polymers containing the highly reactive azlactone group showed a peptide binding of 19 %, but unfortunately this function also underwent spontaneous hydrolysis before the peptide could even be bound. In all cases, oligo(ethylene glycol) methyl ether acrylate was used with a relatively high molecular weight (Mn = 480 Da) was used, which eventually was efficiently shielding the introduced binding units from the added peptide. In future, a shorter monomer with Mn = 300 Da or less or hydrophilic N,N’-dialkyl acrylamide based polymers with less steric hindrance could be used to improve this bioconjugation system. Additionally, the amount of monomers containing peptide binding units in the polymer can be increased and have an additional spacer to achieve higher loading efficiency. The water soluble, linear and short polyether based polymers, so called polyglycidols, were successfully synthesized and modified as described in section 3.2. The obtained polymers were characterized using GPC, 1H NMR, 31P{1H} NMR, IR, and RAMAN spectroscopy. The allyl groups which were present up to 20 % were used for radical induced thiol-ene chemistry for the introduction of functional groups intended for the formation of the physically crosslinking hydrogels. For the positively charged polymers, first a chloride group had to be introduced for the subsequent nucleophilic substitution with the imidazolium compound. There, degrees of modifications were found in the range 40-97 % due to the repulsion forces of the charges, decreased concentration of active chloride groups, and limiting solution concentrations of the polymer for this reaction. For the negatively charged polymers, first a protected phosphonamide moiety was introduced with a deprotection step afterwards showing 100 % conversion for all reactions. Preliminary hydrogel tests did not show a formation of a three-dimensional network of the polymer chains which was attributed to the short backbone length of the used polymers, but the gained knowledge about the synthetic routes for the modification of the polymer was successfully transferred to longer linear polyglycidols. The same applies to the introduction of electron rich and electron poor compounds showing π-π stacking interactions by UV-vis spectroscopy. Finally, long linear polyglycidyl ethers were synthesised successfully up to molecular weights of Mn ~ 30 kDa in section 3.3, which was also proven by GPC, 1H NMR, IR and RAMAN spectroscopy. This applies to the homopolymerisation of ethoxyethyl glycidyl ether, allyl glycidyl ether and their copolymerisation with an amount of the allyl compound ~ 10 %. Attempts for higher molecular weights up to 100 kDa showed an uncontrolled polymerisation behaviour and eventually can be improved in future by choosing a lower initiation temperature. Also, the allyl side groups were modified via radical induced thiol-ene chemistry to obtain positively charged functionalities via imidazolium moieties (85 %) and negatively charged functionalities via phosphonamide moieties (100 %) with quantitative degree of modifications. Hydrogel tests have still shown a remaining solution by using long linear polyglycidols carrying negative charges with long/short linear polyglycidols carrying positive charges. The addition of calcium chloride led to a precipitate of the polymer instead of a three-dimensional network formation representing a too high concentration of ions and therefore shielding water molecules with prevention from dissolving the polymer. These systems can be improved by tuning the polymers structure like longer polymer chains, longer spacer between polymer backbone and charge, and higher amount of functional groups. The objective of the thesis was partly reached containing detailed investigated synthetic routes for the design and characterisation of functional polymers which could be used in future with improvements for bioconjugation and hydrogel formation tests. / Das Ziel dieser Arbeit war es zwei lineare multifunktionale PEG-Alternativen für die Bioconjugation und Hydrogelbildung herzustellen und zu charakterisieren: i) Wasserlösliche Acrylat-basierte Copolymere mit Peptidbindungseinheiten und ii) wasserlösliche Polyether-basierte Copolymere mit verschiedenen funktionalen Gruppen für eine physikalische Vernetzung. In Abschnitt 3.1 wurde die erfolgreiche Synthese von wasserlöslichen und linearen Acrylat-basierten Polymeren, die Oligo(ethylen glycol) methyl ether acrylat mit jeweils 2-Hydroxyethyl acrylate modifiziert mit linearem Thioester, Thiolactonacrylamid und Vinylazlacton enthielten, mittels der lebenden Polymerisationstechnik Reversible Additions-Fragmentierungs Kettenübertragung (RAFT) und mittels freier radikalischer Polymerisation durch GPC, 1H NMR, IR und RAMAN Spektroskopie bewiesen. Es erwies sich als schwer die RAFT-Endgruppe von den kurzen Polymerketten zu entfernen und führte zur Nebenreaktion Aminolyse mit dem Peptid während des Konjugationsprozesses. Außerdem zeigten Polymere ohne RAFT-Endgruppen keine Peptidbindung an den Thioestergruppen, was durch höhere Konzentration der Reaktanten und größeren Anteil an Peptidbindungseinheiten am Polymer in Zukunft verbessert werden könnte. Polymere mit Azlaktongruppen zeigten eine Bindung von 19 %, wobei dies eine sehr reaktive Gruppe ist und vor der Peptidbindung noch hydrolysieren kann. In allen Fällen wurde Oligo(ethylen glycol) methyl ether acrylat mit Mn = 480 Da verwendet, welches die Peptidbindungsstellen abschirmen kann. Daher können in Zukunft Monomere mit Mn = 300 Da oder N,N’-Dialkylacrylamid-basierte Monomere mit weniger sterischer Hinderung für dieses System verwendet werden. Zusätzlich kann der Anteil an Monomeren mit Peptidbindungseinheiten im Polymer und zusätzlicher Seitenkette erhöht werden, um höhere Bindungseffektivitäten zu erreichen. Die erfolgreiche Synthese und Modifikation von wasserlöslichen, linearen und kurzen Polyether-basierten Polymeren, sogenannten Polyglycidolen, konnte in Abschnitt 3.2 mittels GPC, 1H NMR, 31P{1H} NMR, IR und RAMAN Spektroskopie bewiesen werden. Die Allylgruppe, die bis zu 20 % vorhanden war, wurde für die radikalisch induzierte Thiol-En Chemie zur Einführung von funktionellen Gruppen verwendet. Für die positiv geladenen Polymere, wurde zuerst eine Chloridgruppe generiert, die anschließend für die nukleophile Substitution mit einer Imidazolkomponente verwendet wurde. Dabei wurden Substitutionsgrade von 40-97 % gefunden, was an den Abstoßungskräften der Ladungen, verringerter Konzentration der aktiven Chloridgruppen und der begrenzten Löslichkeitskonzentration bei dieser Reaktion liegt. Für die negativ geladenen Polymere wurde zuerst eine geschützte Phosphonamidgruppe eingeführt, die anschließend entschützt wurde und bei allen Reaktionen einen Umsatz von 100 % zeigte. Vorläufige Hydrogeltests zeigten keine Bildung eines dreidimensionales Netzwerks der Polymerketten aber es wurden Erkenntnisse über die synthetischen Routen für die Modifikation der Polymere für den Transfer auf lange lineare Polyglycidole gewonnen. Das gleiche gilt für die Einführung von elektronreichen und elektronarmen Komponenten, die eine π-π Stapelwechselwirkung mittels UV-vis Spektroskopie zeigte. Letztlich wurden lange lineare Polyglycidole bis zu Molmassen von Mn ~ 30 kDa erfolgreich in Abschnitt 3.3 hergestellt und mittels GPC, 1H NMR, IR and RAMAN Spektroskopie bewiesen. Dies gilt für die Homopolymerisation von Ethoxyethyl glycidyl ether, Ally glycidyl ether und deren Copolymerisation mit einem Anteil der Allylkomponente von ~ 10 %. Versuche um höhere Molekulargewichte bis zu 100 kDa zeigten ein unkontrolliertes Polymerisationsverhalten, welches durch eine niedrigere Initiierungstemperatur weiter verbessert werden kann. Ebenso wurden die Allylseitengruppen mittels radikalisch induzierter Thiol-En Chemie modifiziert, um positivgeladene Funktionalitäten durch Imidazolgruppen (85 %) und negativgeladene Funktionalitäten durch Phosphonamidgruppen (100 %) in quantitativen Umsätzen einzuführen. Hydrogeltests von langen linearen Polyglycidolen, die negativ geladene Gruppen haben, mit langen/kurzen linearen Polyglycidolen, die positiv geladene Gruppen haben, haben eine verbleibende Lösung gezeigt. Die Zugabe von Calciumchlorid führte zum Ausfall des Polymers anstatt zu einem dreidimensionalen Netzwerk repräsentiert durch eine zu hohe Ionenkonzentration. Dies führte zu einer Abschirmung der Wassermoleküle vom Polymer und verhinderte, dies aufzulösen. Das System kann verbessert werden, indem die Polymerstruktur variiert wird, z.B. durch längere Polymerketten, größere Abstände zwischen Polymerhauptkette und Ladung und einen größeren Anteil an funktionellen Gruppen. Das Ziel der Arbeit wurde teilweise erreicht, welches detailliert untersuchte Syntheserouten für das Design und die Charakterisierung von funktionellen Polymeren beinhaltet, welche in Zukunft mit Verbesserungen für Bioconjuations- und Hydrogelformulierungstests verwendet werden können.
115

Tissue Engineering Cartilage with a Composite Electrospun and Hydrogel Scaffold

Wright, Lee David 04 May 2011 (has links)
Osteoarthritis is the most prevalent musculoskeletal disease in humans, severely reducing the standard of living of millions of people. Osteoarthritis is characterized by degeneration and loss of articular cartilage which leads to pain, and loss of joint motility and function. Individuals suffering from severe osteoarthritis are commonly treated with full knee replacements. The procedure does eliminate the problem of degrading cartilage tissue; however, it does not fully restore function and its lifetime can be limited. To overcome the disadvantages of current treatments, tissue engineering has become a focus of research to regenerate cartilage. Tissue engineering attempts to repair or replace damaged tissue with cells, biomaterials, and/or molecular signals. Biodegradable scaffolds serve as a temporary replacement for the tissue until it has regenerated. Two types of scaffolds that have been used in tissue engineering are electrospun scaffolds and hydrogels. We have proposed and fabricated a scaffold for cartilage tissue engineering that incorporates an electrospun cylinder and a thermosetting hydrogel in order to provide improved properties compared to either individual material. Electrospun cylinders were created by sintering electrospun mats that include salt pores. The addition of salt pores decreased the mechanical properties of the electrospun materials while also improving the capability of cells to infiltrate into the scaffold. The sintering process involved the connecting of one electrospun mat to an adjacent one. Specifically, poly(d,l-lactide) was capable of sintering to an adjacent electrospun mat when exposed to either heat (near the glass transition temperature) or tetrahydrofuran vapor. The sintering process did not deteriorate the structure or function of the electrospun material. Sintering allowed the creation of unique structures of electrospun material that previously could not be produced. A thermosetting hydrogel was added to the scaffold to replicate the function of proteoglycans present in articular cartilage. A composite scaffold of electrospun polymer and hydrogel showed improved mechanical properties and better integration of the scaffold in vivo compared to an electrospun scaffold with no hydrogel. In conclusion, the composite electrospun and hydrogel scaffold could become an excellent tissue engineering scaffold to treat patients suffering from osteoarthritis. / Ph. D.
116

Microengineered surface topo-graphy facilitates cell grafting from a prototype hydrogel wound dressing with anti-bacterial capability.

Britland, Stephen T., Denyer, Morgan C.T., Din, Abbas, Smith, Annie G., Crowther, N.J., Vowden, Peter, Eagland, D., Vowden, Kath January 2006 (has links)
No
117

Chitosan-based biomaterials for treatment of acute and chronic osteomyelitis

Tucker, Luke Jackson 13 August 2024 (has links) (PDF)
Osteomyelitis or infection of bone is painful and difficult to treat due to limited tissue penetration by antibiotics. A resulting chronic infection has around a 30% chance of never resolving and resulting in amputation of the limb. The current standard of care for osteomyelitis is debridement and systemic antibiotics for two to six months, which can cause systemic toxicity and increase the emergence of antibiotic-resistant bacteria. It is therefore necessary to develop a localized biodegradable treatment that can deliver high concentrations of antimicrobials while minimizing the risk of systemic side effects. The overall objective of this work was to develop, characterize, and challenge locally delivered chitosan-based biomaterials loaded with either antibiotic or alternative antimicrobial agent(s) in either chronic or acute rat osteomyelitis models. The specific aims were to: (i) determine the chemical and biological interactions between chitosan hydrogels and fosfomycin in vitro, (ii) evaluate the antimicrobial efficacy of chitosan hydrogel loaded with fosfomycin antibiotic, either in the gel, in polylactic acid microparticles, or in both gel and microparticles in vitro and in a chronic rat osteomyelitis model, compared to blank chitosan hydrogel, and (iii) evaluate the antimicrobial efficacy of electrospun chitosan membranes loaded with cis-2-decenoic acid and/or bupivacaine in an acute rat osteomyelitis model, compared to current standard Celox™gauze. As hypothesized, chitosan biomaterials loaded with antimicrobial(s) reduced the bacterial burden and disease symptoms when compared to the standard treatment or blank materials. In closing, locally administrated antibiotics with prolonged availability via engineered biomaterials such as chitosan may allow for increased therapeutic efficacy against osteomyelitis.
118

Synergizing Click Chemistry and Light-Mediated 3D Printing: Innovations for Advanced Material Design and Processing Technologies / Synergie zwischen Klick-Chemie und Lichtvermitteltem 3D-Druck: Innovationen für Fortschrittliches Materialdesign und Verarbeitungstechnologien

Cianciosi, Alessandro January 2024 (has links) (PDF)
The dynamic research fields of biofabrication and tissue engineering (TE) play a pivotal role in bridging the translational gap between research and clinical applications. The advent of 3D printing technologies have prompted great advancements in these two research fields by enabling the fabrication of analogs mimicking the complex hierarchical organization of human tissues and organs. Key to this progress is the development of innovative hydrogels as they can be ideal scaffolding material considering their similarity to the extracellular matrix (ECM), processability under mild conditions, and usually a straightforward and minimally invasive translation into the human body. Hydrogels can be formed by chemical crosslinking using external stimuli (e.g., light) in a quick and controlled manner. In recent years, radical-mediated thiol-ene polymerizations have experienced an awakening of attention in the field of biofabrication and TE. Indeed, this crosslinking strategy yields to hydrogels characterized by lower shrinkage stress, homogenous networks with a low amount of unreacted monomer, along with a high resistance to oxygen inhibition. In this dissertation the focus is centered on developing and optimizing photosensitive biomaterial-based hydrogels tailored for thiol-ene click chemistry strategies, and subsequently integrating these advanced materials with cutting-edge 3D printing techniques. An innovative example of this integration is represented by the development of a novel optical fiber-assisted printing (OFAP) technology which aims to provide a valuable alternative in the field of vat photopolymerization (VPP) and exploit the fast thiol-ene click chemistry crosslinking strategy for both the straightforward 2D photopatterning and the embedded 3D printing of gelatin-based photosensitive precursors. All in all, the continuous evolution of these fabrication technologies along with the development of advanced cell-instructive biomaterials hold promise for transformative breakthroughs in biofabrication and TE. The first chapter of this dissertation contains a comprehensive state of the art about hydrogels in the context of biofabrication and TE, with up-to-date definitions of bioinks and their distinction from biomaterial inks. Moving towards light-based printing techniques, an important definition and contextualization of photopolymer resins and bioresins is given. Furthermore, an in-depth discussion around the state of the art of photosensitive hydrogels and their applications along with the novel light-based 3D printing techniques is highlighted. Eventually, the main goal of the thesis and the contribution of each chapter to the overarching goal are presented. While designing a functionalized biomaterial for TE applications, the possibility to tune its molecular properties, such as average molecular weight and degree of functionalization, represents an important aspect for establishing it as flexible platform towards different cells and tissues. The second chapter of this thesis focuses on the design of functional gelatin-based hydrogels with tuned degree of modification for supporting long-term survival and functionality of primary human fibroblast and endothelial cells. Gelatin, a well-established biomaterial, is modified with allyl moieties (gelAGE) and crosslinked via thiol-ene click chemistry in the presence of a polyethylene glycol (PEG)-based thiolated crosslinker and a photoinitiator. In this work, two gelAGE products, G1MM and G2LH, with different molecular properties are developed. The G2LH-based biomaterial is characterized by longer and less functionalized gelatin chains compared to the G1MM-based analog. These properties are exploited to fabricate a hydrogel featuring a lower total polymer content, thus a lower crosslinking density. Indeed, the G2LH-based hydrogel is characterized by a softer polymer matrix with a homogeneous and open porosity. While the cell viability is comparable in both G1MM- and G2LH-based hydrogels, the latter demonstrates to better support F-acting organization and cell-cell interaction, leading to tubular-like structures in the co-culture samples. The supported cellular functionality from the G2LH-based hydrogel is eventually demonstrated by the secretion of ECM molecules as fibronectin and collagen. This study contributes to the thesis by establishing a tailored and functional biomaterial platform for TE, addressing the specific needs of human primary fibroblast and endothelial cells both in mono- and co-culture. Natural tissues often feature mechanical and functional gradients, thus mimicking these intricated structures with additive manufacturing (AM) approaches poses challenges that includes high spatiotemporal control and availability of versatile biomaterials inks. The third chapter introduces a novel composite biomaterial ink formulation for direct ink writing (DIW) specifically focusing on the fabrication of constructs featuring dual independent gradients. The hypothesis of this study is that the combination of multifunctional cellulose nanofibrils (CNFs), also featuring azido moieties, with a photosensitive gelAGE-based matrix would enable the introduction of independent mechanical and functional gradients. Initially, a precursor solution composed of succinylated nanocellulose (C6SA-CNF), gelAGE, linear di-thiolated PEG and a photoinitiator is used to create mechanical gradients. Two straightforward and alternative strategies, namely gradient and anisotropic printing, are used to achieve this goal. A key aspect for the introduction of functional gradients in the 3D printed analogs is the functionalization of C6SA-CNF with azido moieties (C6SA-CNF-N3). Indeed, these functional groups show the capability of undergoing spontaneous click chemistry with a water-soluble dye (DBCO-Cy5). Independent dual gradients are obtained by using a combination of gradient and anisotropic printing, and subsequently dipping the printed analog into a solution of DBCO-Cy5 to induce the spontaneous click reaction. This chapter explores the unique properties of multifunctional nanocellulose to fabricate independent dual gradients and further corroborate the versatility of gelAGE towards the design of composite biomaterial inks for DIW. The fourth chapter focuses on volumetric bioprinting (VBP), a fabrication technique which holds great potential due to its capability of generating complex cell-tissue constructs in tens of seconds with high-throughput, thus addressing one of the major limitations of established AM technologies. While VBP enables rapid fabrication of living tissue constructs, the challenge remains in developing compatible resins. Specifically, the need for soft hydrogels with suitable viscosity and optical transparency, aligning with the requirements of the technology, represents a significant research gap. The study further advances the technology by exploiting thiol-ene click chemistry to precisely control the hydrogel network architecture and match the fast-printing times of VBP, while maintaining exceptionally soft polymer matrices. This chapter significantly contributes to the thesis by modifying the gelAGE platform towards soft photoresins for VBP, enabling an environment suitable for adipose tissue engineering. In the fifth chapter of this dissertation, a novel and straightforward light-based 3D printing technology, OFAP, is presented as valuable alternative in the field of VPP. In this study, an innovative LED-coupled optical fiber is combined with an automated platform which control its spatiotemporal position for both 2D and 3D printing of photosensitive gelatin-based resins. OFAP demonstrates enhanced precision for 2D photopatterning through the on-the-fly adjustment of printing parameters as gap and light dosage, offering a versatile and reproducible platform for fabricating structures with progressive features and multi-material constructs, layer-by-layer. An optimized resin composition utilizing gelAGE with food dyes as light absorbers is introduced. Furthermore, a novel gelatin-based biomaterial featuring alkyne groups, exhibits absorption in near-visible light, aligning with OFAP requirements. Beyond 2D patterning, OFAP extends to embedded 3D printing within a resin bath, demonstrating potential towards the fabrication of biomimetic scaffolds and TE. The sixth chapter contains an exhaustive conclusive discussion about the findings of each chapter and their contribution to the final goal of the dissertation along with future perspectives. Overall, this dissertation contains innovative approaches to harness the great potential of advanced cell instructive biomaterials and cutting-edge 3D printing techniques to contribute on the fast-paced evolution of biofabrication and TE. Particularly, a tunable and flexible gelatin-based biomaterial is presented to not only fabricate hydrogels suitable for specific tissue and cells, but also as universal biomaterial ink and bioresin platform adaptable for cutting-edge 3D printing techniques as DIW, OFAP and VBP. / Die dynamischen Forschungsbereiche der Biofabrikation und des Tissue Engineering (TE) spielen eine entscheidende Rolle bei der Überbrückung der Kluft zwischen Forschung und klinischen Anwendungen. Das Aufkommen von 3D-Drucktechnologien hat zu großen Fortschritten in diesen beiden Forschungsbereichen geführt, da sie die Herstellung von Analoga ermöglichen, die die komplexe hierarchische Organisation von menschlichem Gewebe und Organen nachahmen. Der Schlüssel zu diesem Fortschritt ist die Entwicklung innovativer Hydrogele, die aufgrund ihrer Ähnlichkeit mit dem extrakutanen Gewebe und den Organen ein ideales Gerüstmaterial sein können aufgrund ihrer Ähnlichkeit mit der extrazellulären Matrix (ECM), ihrer Verarbeitbarkeit unter milden Bedingungen und ihrer in der Regel unkomplizierten und minimalinvasiven Anwendung im menschlichen Körper. Hydrogele können durch chemische Vernetzung unter Verwendung externer Reize (z. B. Licht) schnell und kontrolliert gebildet werden. In den letzten Jahren wurde die radikal-vermit- telte Thiol-En-Polymerisationen in den letzten Jahren auf dem Gebiet der Biofabrikation und der TE große Aufmerksamkeit erlangt. Diese Vernetzungsstrategie führt zu Hydrogelen, die sich durch eine geringere Schrumpfspannung, homogene Netzwerke mit einem geringen Anteil an nicht umgesetzten Monomeren und eine hohe Beständigkeit gegen Sauerstoffinhibition auszeichnen. In dieser Dissertation liegt der Schwerpunkt auf der Entwicklung und Optimierung lichtempfindlicher Hydrogele auf Biomaterialbasis, die für Thiol-En-Click-Chemie-Strategien maßgeschneidert sind, und der anschließenden Integration dieser fortschrittlichen Materialien in modernste 3D-Drucktechniken. Ein innovatives Beispiel für diese Integration ist die Entwicklung einer neuartigen faseroptischen Drucktechnologie (OFAP), die eine wertvolle Alternative im Bereich der Bottich- Photopolymerisation (VPP) darstellt und die schnelle Thiol-En-Click-Chemie-Ver- netzungsstrategie sowohl für die einfache 2D-Photostrukturierung als auch für den eingebetteten 3D-Druck von lichtempfindlichen Gelatine-basierten Vorläufern nutzt. Alles in allem verspricht die kontinuierliche Weiterentwicklung dieser Herstellungstechnologien zusammen mit der Entwicklung fortschrittlicher zellin- struktiver Biomaterialien transformative Durchbrüche in der Biofabrikation und TE. Das erste Kapitel dieser Dissertation enthält einen umfassenden Überblick über den Stand der Technik bei Hydrogelen im Zusammenhang mit Biofabrikation und TE, mit aktuellen Definitionen von Biotinten und deren Unterscheidung von Bio- materialtinten. Im Hinblick auf lichtbasierte Drucktechniken wird eine wichtige Definition und Kontextualisierung von Photopolymerharzen und Bioresinen gegeben. Darüber hinaus wird der aktuelle Stand der Technik bei lichtempfindlichen Hydrogelen und ihren Anwendungen sowie den neuartigen lichtbasierten 3D-Drucktechniken eingehend erörtert. Schließlich werden das Hauptziel der Arbeit und der Beitrag der einzelnen Kapitel zu diesem übergeordneten Ziel vorgestellt. Bei der Entwicklung eines funktionalisierten Biomaterials für TE-Anwendungen ist die Möglichkeit, seine molekularen Eigenschaften, wie z. B. das durchschnittliche Molekulargewicht und den Grad der Funktionalisierung, einzustellen, ein wichtiger Aspekt, um es als flexible Plattform für verschiedene Zellen und Gewebe zu etablieren. Das zweite Kapitel dieser Arbeit befasst sich mit der Entwicklung funktioneller Hydrogele auf Gelatinebasis mit abgestimmtem Modifizierungsgrad zur Unterstütz- ung des langfristigen Überlebens und der Funktionalität primärer menschlicher Fibroblasten und Endothelzellen. Gelatine, ein bewährtes Biomaterial, wird mit Allylgruppen (gelAGE) modifiziert und über Thiol-En-Click-Chemie in Gegenwart eines thiolierten Vernetzers auf Polyethylenglykol Basis (PEG) und eines Photoinitiators vernetzt. In dieser Arbeit werden zwei gelAGE-Produkte, G1MM und G2LH, mit unterschiedlichen molekularen Eigenschaften entwickelt. Das auf G2LH basierende Biomaterial zeichnet sich durch längere und weniger funktionalisierte Gelatineketten im Vergleich zum G1MM-basierten Analogon aus. Diese Eigenschaften werden ausgenutzt um ein Hydrogel herzustellen, das einen geringeren Gesamtpolymer- gehalt und damit eine geringere Vernetzungsdichte aufweist. Das Hydrogel auf G2LH-Basis zeichnet sich durch eine weichere Polymermatrix mit einer homogenen und offenen Porosität aus. Während die Lebensfähigkeit der Zellen sowohl in den G1MM- als auch in den G2LH-basierten Hydrogelen vergleichbar ist, zeigt sich, dass letztere eine bessere F-Organisation und Zell-Zell-Interaktion unterstützen, was zu röhrenartigen Strukturen in den Co-Kulturproben führt. Die durch das G2LH-Hy- drogel unterstützte zelluläre Funktionalität Hydrogels wird schließlich durch die Sekretion von ECM-Molekülen wie Fibronektin und Kollagen nachgewiesen. Diese Studie leistet einen Beitrag zur Dissertation, indem sie eine maßgeschneiderte und funktionelle Biomaterialplattform für TE entwickelt, die den spezifischen Bedürfnissen von humanen primären Fibroblasten- und Endothelzellen sowohl in Mono- als auch in Co-Kultur gerecht wird. Natürliche Gewebe weisen häufig mechanische und funktionale Gradienten auf. Die Nachahmung dieser komplizierten Strukturen mit additiven Fertigungsverfahren (AM) stellt daher eine Herausforderung dar, zu der eine hohe räumliche und zeitliche Kontrolle und die Verfügbarkeit vielseitiger Biomaterialtinten gehören. Im dritten Kapitel wird eine neuartige Komposit-Biomaterialtintenformulierung für das Direct Ink Writing (DIW) vorgestellt, die speziell auf die Herstellung von Konstrukten mit zwei unabhängigen Gradienten ausgerichtet ist. Die Hypothese dieser Studie ist, dass die Kombination von multifunktionalen Cellulose-Nanofibrillen (CNFs), die auch Azidogruppen, mit einer lichtempfindlichen Matrix auf der Basis von gelAGE die Einführung unabhängiger mechanischer und funktioneller Gradienten ermöglichen würde. Zunächst wird eine Vorläuferlösung aus succinylierter Nanocellulose (C6SA-CNF), gelAGE, linearem di-thioliertem PEG und einem Photoinitiator verwendet, um mechanische Gradienten zu erzeugen. Zur Erreichung dieses Ziels werden zwei einfache und alternative Strategien, nämlich das Gradienten- und das anisotrope Drucken, eingesetzt. Ein Schlüsselaspekt für die Einführung funktioneller Gradienten in den 3D-gedruckten Analoga ist die Funktionalisierung von C6SA-CNF mit Azidogruppen (C6SA-CNF-N3). Diese funktionellen Gruppen sind in der Lage, eine spontane Klick-Chemie mit einem wasserlöslichen Farbstoff (DBCO-Cy5) einzugehen. Unabhängige duale Gradienten werden durch eine Kombination aus Gradienten- und anisotropem Druck und anschließendem Eintauchen des gedruckten Analogons in eine DBCO-Cy5-Lösung zur Auslösung der spontanen Click-Reaktion erzielt. In diesem Kapitel werden die einzigartigen Eigenschaften der multifunktiona- len Nanocellulose zur Herstellung unabhängiger dualer Gradienten erforscht und die Vielseitigkeit von gelAGE im Hinblick auf die Entwicklung von zusammengesetzten Biomaterialtinten für DIW weiter untermauert. Das vierte Kapitel befasst sich mit dem volumetrischen Bioprinting (VBP), einer Herstellungstechnik, die aufgrund ihrer Fähigkeit, komplexe Zell-Gewebe-Konstrukte in wenigen Sekunden und mit hohem Durchsatz zu erzeugen, ein großes Potenzial birgt und damit eine der größten Einschränkungen etablierter AM-Technologien überwindet. Während VBP die schnelle Herstellung von lebenden Gewebekonstrukten ermöglicht, besteht die Herausforderung in der Entwicklung kompatibler Harze. Insbesondere der Bedarf an weichen Hydrogelen mit geeigneter Viskosität und optischer Transparenz, die mit den Anforderungen der Technologie übereins- timmen, stellt eine erhebliche Forschungslücke dar. Die Studie bringt die Technologie weiter voran, indem sie die Thiol-En-Click-Chemie nutzt, um die Architektur des Hydrogel-Netzwerks präzise zu steuern und die schnellen Druckzeiten von VBP zu erreichen, während gleichzeitig außergewöhnlich weiche Polymermatrizen erhalten bleiben. Dieses Kapitel leistet einen wichtigen Beitrag zur Dissertation, indem es die gelAGE-Plattform in Richtung weiches Photoresin für VBP modifiziert und damit eine Umgebung ermöglicht, die für das Adipose Tissue Engineering geeignet ist. Im fünften Kapitel dieser Dissertation wird eine neuartige und unkomplizierte lichtbasierte 3D-Drucktechnologie, OFAP, als wertvolle Alternative im Bereich des VPP vorgestellt. In dieser Studie wird eine innovative LED-gekoppelte optische Faser mit einer automatisierten Plattform kombiniert, die ihre räumlich-zeitliche Position sowohl für den 2D- als auch den 3D-Druck von lichtempfindlichen gelatinebasierten Harzen kontrolliert. OFAP zeigt eine verbesserte Präzision für das 2D-Photomustering durch die fliegende Anpassung von Druckparametern wie Spalt und Lichtdosierung und bietet eine vielseitige und reproduzierbare Plattform für die Herstellung von Strukturen mit progressiven Merkmalen und Multi- materialkonstruktionen, Schicht für Schicht. Eine optimierte Harzzusammensetzung unter Verwendung von gelAGE mit Lebensmittelfarbstoffen als Lichtabsorber wird vorgestellt. Darüber hinaus zeigt ein neuartiges Biomaterial auf Gelatine- basis mit Alkin-Gruppen eine Absorption im nahen sichtbaren Bereich, was den OFAP-Anforderungen entspricht. Über die 2D-Musterung hinaus ermöglicht OFAP auch den eingebetteten 3D-Druck in einem Harzbad und zeigt damit das Potenzial für die Herstellung biomimetischer Gerüste und TE. Das sechste Kapitel enthält eine ausführliche abschließende Diskussion über die Ergebnisse der einzelnen Kapitel und ihren Beitrag zum Endziel der Dissertation sowie Zukunftsperspektiven. Insgesamt enthält diese Dissertation innovative Ansätze zur Nutzung des großen Potenzials fortschrittlicher zellinstruktiver Biomaterialien und modernster 3D-Drucktechniken, um zur rasanten Entwicklung der Biofabrikation und TE beizutragen. Insbesondere wird ein abstimmbares und flexibles Biomaterial auf Gelatinebasis vorgestellt, mit dem nicht nur Hydrogele hergestellt werden können, die für bestimmte Gewebe und Zellen geeignet sind, sondern das auch als universelle Biomaterialtinte und Bioresin-Plattform für modernste 3D-Druckverfahren wie DIW, OFAP und VBP geeignet ist.
119

Microsphères résorbables pour embolisation et chimio embolisation / Resorbable microspheres for embolisation and chemo-embolisation

Nguyen, Van Nga 27 February 2012 (has links)
L’embolisation thérapeutique est devenu le traitement de choix pour l’hémorragie, les malformations artériovéneuses ou certains types de cancer. Parmi différents agents d’embolisation,les microsphères non dégradables (Embozene®, Bead BlockTM,…) sont les plus utilisées. Leur forme bien sphérique et leur taille calibrée permettent un meilleur ciblage dans les vaisseaux et une bonne qualité de l’occlusion. Dans certains cas cliniques, l’embolisation temporaire, envisageable avec l’utilisation des microsphères résorbables peut être bénéfique pour les patients. Le but du travail réalisé au cours de cette thèse a été le développement de microsphères résorbables satisfaisant les différents critères pour être employées comme matériaux d’embolisation (taille calibrée,biocompatibles, élastique pour être injectée au travers des cathéters mais suffisamment rigide pour résister à la pression sanguine). Dans cet objectif, nous avons développé une méthode de synthèse de microsphères constituées d’hydrogels hydrolysables par polymérisation en suspension. Une large gamme de microsphères ont été synthétisées en modulant la nature du réticulant et/ou la composition des milieux de polymérisation. Les expériences in vitro ont démontré que les microsphères obtenues sont satisfaisantes pour permettre leur injection au travers des cathéters. La dégradation rapide des ponts de réticulation a été confirmée à travers la diminution du module élastique G’ et du pH du surnageant, accompagnée d’une augmentation du taux de gonflement.Malgré une dégradation partielle des microsphères (due à une réaction secondaire formant des liaisons de réticulation non dégradables), le temps de l’hydrolyse a répondu parfaitement au cahier de charges (entre 7 et 49 jours). Des études complémentaires pour optimiser la réaction de polymérisation vont permettre le développement de microsphères totalement dégradables. / Therapeutic embolization is nowadays a first line treatment for haemorrhage, arteriovenous malformation or tumors. Among different embolization agents, non degradable microspheres(Embozene®, Bead BlockTM,…) are the most employed thanks to their well calibrated spherical shape which allows good occlusion. In some cases including treatment of uterine fibroids or chemo-sensitive tumors, it may be interesting to achieve a temporary embolization to avoid definitive destruction of the tissue. Temporary embolization would be possible using biodegradable microspheres. The aim of our work was to develop degradable microspheres having all requiredcharacteristics to be used as embolization material (well calibrated in size, biocompatible, rigide enough to resist blood pressure but elastic enough to remain intact during injection through catheter). To this purpose, we have developed hydrolysable hydrogel based microspheres by suspension polymerization. A wide range of microspheres was synthesized by varying the type of crosslinker and composition of the polymerization medium. In vitro test showed that the microspheres have suitable characteristics to pass through catheter. Degradation studies revealed a rapid diminution of G’ modulus and the pH of the supernatants, accompanied by an increase of swelling ratio due to the hydrolysis of the crosslinkings. Although microspheres were not totally degradable as expected (since a side reaction had created non degradable crosslinking during the polymerisation), characterisations showed promising results that the degradation did occur within a suitable time scale requirements for temporal embolization.
120

Dynamique de bulles de cavitation dans des systèmes micro-confinés / Cavitation bubbles dynamics confined in microsystems

Scognamiglio, Chiara 15 December 2017 (has links)
Cette thèse porte sur l’étude de la cavitation, c’est-à-dire l’apparition d’une bulle dans un liquide soumis à une dépression. Le contrôle du processus est d’un grand intérêt dans plusieurs domaines, de l’hydrodynamique à la biologie. En fait ce phénomène, apparemment inoffensif, peut provoquer des graves dommages comme la fracture d’hélices ou la mort d’arbres. La première partie de la thèse se focalise sur la cavitation dans un système biomimétique. Il s’agit de micro-volumes d’eau encapsulés dans un milieu poro-élastique. L’évaporation de l’eau à travers l’hydrogel génère des pressions négatives et finalement l’apparition d’une bulle. Lorsque la première bulle de cavitation apparait dans une cellule, elle peut déclencher en quelques microsecondes l’apparition d’autres bulles dans les cellules voisines, en amorçant un effet d’avalanche ultra-rapide. Nous résolvons la dynamique et l’acoustique des bulles, dans le cas des événements uniques ou multiples. La réalisation d’un dispositif innovant ou les volumes du liquide sont encapsulés entre l’hydrogel et une lame de verre ouvre la voie à l’investigation de l’eau métastable. Une deuxième partie du travail a été consacrée à une étude interdisciplinaire où la microfluifique et la biologie sont combinées et appliqués à la livraison de médicament. Le dispositif est composé d’un vaisseau sanguin artificiel en communication avec un tissu cible placé dans un compartiment créé exprès. Les parois du canal microfluidique sont tapissées de cellules endothéliales pour reproduire la paroi réelle d’un vaisseau sanguin in vivo. Ce dispositif permet l’étude des effets des bulles activées par des ultrasons sur la barrière endothéliale. / The present thesis focuses on cavitation process, meaning nucleation and dynamics of a bubble within a liquid as a result of pressure decrease. In particular, we investigate the growth of the vapor phase in micrometric volumes of water confined by a poro-elastic material. In systems where water is encapsulated in a porous medium, molecules can evaporate from the pores resulting in a remarkable pressure reduction and bubbles nucleation. Once a vapor bubble nucleates, it can trigger within few microseconds the appearance of other bubbles in the neighbor cavities, activating an ultra-fast avalanche-like phenomenon. We resolved the dynamics and acoustics of cavitation bubbles, in case of singles or multiple nucleation events. The realization of an innovative device where water is encapsulated between a porous material and a glass window opens the way for metastable water investigation. A second part of the manuscript is devoted to a new project where microfluidics and biology are combined and applied to drug delivery. The device consists of an artificial blood vessel in communication with the target tissue accommodated in a purposely designed compartment (tissue-on-a-chip). The walls of the microfluidic channel mimicking the vessel are lined with endothelial cells to reproduce the actual walls of in vivo blood vessels. This device allows to investigate the effects of ultrasound-activated bubbles on the blood vessels wall.

Page generated in 0.0607 seconds