• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 270
  • 260
  • 21
  • 16
  • 8
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 703
  • 703
  • 227
  • 220
  • 110
  • 83
  • 81
  • 72
  • 65
  • 53
  • 53
  • 51
  • 47
  • 43
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Estudo da oxidação de matéria orgânica de lixiviados de aterro sanitário por meio de tratamento com ozônio, peróxido de hidrogênio e radiação ultravioleta / Oxidation of organic matter from landfill leachate by ozone, hydrogen peroxide and ultraviolet

Liana Notari Pasqualini 01 October 2010 (has links)
Aterro sanitário é uma forma de destinação final de resíduos sólidos que gera lixiviado durante e após sua operação. O lixiviado é um líquido de elevada carga orgânica e poder poluidor. A presente pesquisa objetivou estudar a remoção da matéria orgânica presente em lixiviado de aterro sanitário bruto ou pré-tratado por air-stripping por meio de processos oxidativos avançados. Avaliou-se a influência do pré-tratamento na eficiência da remoção de matéria orgânica, a possibilidade do uso do conceito de número médio de oxidação do carbono como indicativo de oxidação e a ocorrência de processos sinérgicos na remoção dos parâmetros DQO, COT e cor proveniente da aplicação combinada de oxidantes. Os tratamentos propostos foram: ozônio apenas, ozônio/peróxido de hidrogênio e peróxido de hidrogênio/radiação ultravioleta. As doses de ozônio variaram entre 0,5 e 6 g/L. As doses de peróxido de hidrogênio variaram entre 0,2 e 7,2 g/L. Os tempos de contato de radiação ultravioleta variaram entre 40 e 200 minutos. O pré-tratamento por air-stripping, que visava à remoção de amônia, reduzia carga orgânica e a cor do lixiviado. A eficiência de remoção da DQO e COT foi baixa para todos os tratamentos propostos, alcançando valor máximo de 44%. As baixas eficiências podem ser decorrentes das interferências causadas por alcalinidade, nitrogênio amoniacal e sólidos fixos. O tratamento baseado em ozônio apenas apresentou as maiores eficiências de remoção de matéria orgânica. A remoção de cor foi elevada em todos os tratamentos, e os melhores resultados foram no tratamento baseado em ozônio/peróxido de hidrogênio. O pré-tratamento não alterou significativamente a oxidação da matéria orgânica. O conceito de número médio de oxidação do carbono não foi adequado para a indicação do processo oxidativo. A limitação do uso desse conceito está relacionada, provavelmente, à presença de DQO referente a substâncias inorgânicas, compostos nitrogenados e clorados. O efeito sinérgico do uso combinado de oxidantes não é dominante para a remoção da DQO e COT, e é em se tratando da remoção de cor. / Sanitary landfills are a method for solid waste disposal that generates leachate when operating and after their closure. Leachate is a pollutant liquid with a high concentration of organic constituents. The aim of this study was the application of advanced oxidative processes for organic matter removal from raw and pre-treated leachate by air-stripping. This research evaluated the influence of pre-treatment on the organic matter removal efficiency; the possibility of using the concept of mean oxidation number of carbon, as indicative of organic matter oxidation; and the occurrence of synergic processes in the removal of COD, TOC and color, when combined oxidants were used. The proposed treatments were ozone only, ozone/hydrogen peroxide and hydrogen peroxide/ultraviolet radiation. Ozone concentrations varied from 0.5 to 6 g/L. Hydrogen peroxide concentrations varied from 0.2 to 7.2 g/L. Ultraviolet radiation contact time were between 40 and 200 minutes. Air-stripping pre-treatment, which aimed ammonia removal, caused organic and color reduction. The removal efficiency of COD and TOC was low for all treatments, reaching a maximum of 44%. The low efficiencies may result from interference caused by alkalinity, ammonia nitrogen and fixed solids. When ozone only was used, the highest organic matter removal efficiencies were achieved. Color removal was high for all the systems, and the best option for its removal was ozone/hydrogen peroxide system. The pre-treatment did not improve significantly the organic matter oxidation. The concept of mean oxidation number of carbon was not appropriate as indicator of oxidation process. The limitation of this concept is probably related to the presence of the inorganic COD, nitrogen and chlorine compounds. The synergic effect of combined oxidants was only dominant for color removal, which was not observed for COD and TOC removal.
422

Estudo da eletrogeração de peróxido de hidrogênio utilizando eletrodos de difusão gasosa modificados com 9,10-fenantraquinona para aplicação no tratamento de efluentes contendo os antibióticos am / Study of hydrogen peroxide electrogeneration using gas diffusion electrodes modified with 9,10-phenanthraquinone for use in the treatment of effluents containing the antibiotics amoxicillin and ampicillin

Fernando Lindo Silva 18 May 2018 (has links)
Fármacos tem sido foco de diversas estudos e pesquisas devido à constatação de sua ocorrência em diversos compartimentos ambientais. Esses compostos, com destaque para os antibióticos, apresentam biodegradação limitada e contínua introdução nos sistemas hídricos devido ao descarte incorreto, eliminação por excreção de parte da dose ingerida e, principalmente, pelo processo de fabricação nas indústrias farmacêuticas. Como as formas convencionais de tratamento têm se mostrado pouco efetivas, a tecnologia eletroquímica associada aos processos oxidativos avançados (POA) têm se mostrado uma maneira eficiente na degradação desses compostos. Em diversos estudos, os eletrodos de difusão gasosa (EDG) são apresentados como uma opção promissora no que diz respeito à eletrogeração de peróxido de hidrogênio, uma das principais fontes de radical hidroxila utilizado nos POA. Nesse aspecto, surgem estudos sobre modificadores que podem atuar como catalisadores nesse processo. Neste trabalho estudou-se o comportamento eletroquímico de dois modificares orgânicos suportados em matriz condutora de carbono Printex 6L. Os compostos orgânicos escolhidos, pertencentes a classe das quinonas, foram a 2-terc-butil-9,10-antraquinona (TBA) e a 9,10 fenantraquinona (FQA). Os estudos foram realizados em um eletrodo de disco/anel rotatório (RRDE), depositando-se uma microcamada porosa, contendo ou não o modificador, sobre o carbono vítreo deste eletrodo. Através dos resultados de voltametria cíclica e linear pode-se avaliar a geração de peróxido de hidrogênio, que foi superior para as microcamadas com adição dos modificadores. O material com 0,5% (m/m) de FQA mostrou-se o mais eficiente entre todos, com 30% de rendimento a mais quando comparado à matriz Printex e 6% maior quando comparada a mesma quantidade de TBA na produção do peróxido. Estudou-se também a eficiência da FQA para a produção de peróxido de hidrogênio (H2O2) a partir da reação de redução do oxigênio gasoso (O2), em eletrodos de difusão gasosa (EDG). Considerando os cinco eletrodos estudados (Printex não modificado e modificado com 0,1, 0,5, 1,0 e 2,0% de FQA) foi realizada uma avaliação sobre qual eletrodo seria o mais apto a ser utilizado nos trabalhos de degradação dos fármacos. Para isso fez-se a análise da concentração de peróxido de hidrogênio eletrogerada, o consumo energético e a cinética envolvida no processo. Os resultados mostraram um aumento significativo na produção de peróxido para os eletrodos modificados com 0,5 e 1,0% de FQA. Sendo que o eletrodo sem modificação atingiu um máximo de 215 ppm de H2O2 em um potencial de -1,4 V com um consumo energético de 29 kWh kg-1 de H2O2. O eletrodo modificado com 0,5% de FQA alcançou 566 pmm de H2O2 em um potencial de -1,4 V com um consumo energético de 14 kWh kg-1 de H2O2. Estudou-se também a degradação dos antibióticos amoxicilina e ampicilina (AMX e AMP) com anodos condutores comerciais de diamante dopados com boro. A influência da densidade de corrente aplicada (15, 30 e 60 mA cm-2) para o mesmo eletrólito de suporte (3 g / L de Na2SO4) e a mesma concentração inicial de antibióticos (100 mg dm-3 cada) foi avaliada. A mineralização total dos antibióticos foi atingida. Além disso, o processo foi encontrado para ser mais eficiente na densidade de corrente de 30 mA cm-2. Os resultados demonstram a importância dos processos eletroquímicos mediados na degradação de AMX e AMP. Esta influência foi confirmada por alguns testes em que a eletrólise foi acoplada à radiação UV ou à radiação ultrassônica. O uso de radiação UV resulta em uma degradação menos eficiente, enquanto que o ultrassom melhora um pouco a taxa de mineralização quando comparado ao processo eletrolítico simples. / Drugs have been the focus of several studies and researches due to the finding of their occurrence in several environmental compartments. These compounds, especially antibiotics, present limited biodegradation and continuous introduction into water systems because of incorrect disposal, elimination by excretion of part of the ingested dose and, mainly, by the manufacturing process in the pharmaceutical industries. As conventional mode of treatment have been shown to be ineffective, electrochemical technology associated with advanced oxidative processes (POA) has been shown to be an efficient way of degradation of these compounds. In several studies, gas diffusion electrodes (EDG) are presented as a promising option with respect to hydrogen peroxide electrogeneration, one of the main sources of hydroxyl radical used in POAs. In this aspect, studies on modifiers appear that can act as catalysts in this process. In this work the electrochemical behavior of two organic modifiers supported in Printex 6L carbon matrix was studied. The organic compounds chosen, belonging to the class of quinones, were 2-tert-butyl-9,10-anthraquinone (TBA) and 9,10-phenanthraquinone (FQA). The studies were performed on a rotating disk / ring electrode (RRDE), depositing a porous micro-layer, containing or not the modifier, on the glassy carbon of this electrode. Through the results of cyclic and linear voltammetry the generation of hydrogen peroxide can be evaluated, which was superior to the micro-layers with addition of the modifiers. The material with 0.5% (w / w) of FQA was the most efficient of all, with 30% more yield when compared to the Printex matrix and 6% higher when compared to the same amount of TBA in peroxide production . It was also studied the efficiency of the FQA for the production of hydrogen peroxide (H2O2) from the reduction reaction of gaseous oxygen (O2) in gaseous diffusion electrodes (EDG). Considering the five electrodes studied (Printex not modified and modified with 0.1, 0.5, 1.0 and 2.0% of FQA) an evaluation was made on which electrode would be the most suitable to be used in the degradation works of the drugs. For that, the analysis of the hydrogen peroxide concentration, the energy consumption and the kinetics involved in the process were analyzed. The results showed a significant increase in peroxide production for electrodes modified with 0.5 and 1.0% of FQA. Since the unmodified electrode reached a maximum of 215 ppm of H2O2 at a potential of -1.4 V with an energy consumption of 29 kWh kg-1 of H2O2. The electrode modified with 0.5% of FQA reached 566 pmm of H2O2 at a potential of -1.4 V with an energetic consumption of 14 kWh kg-1 of H2O2. The degradation of antibiotics amoxicillin and ampicillin (AMX and AMP) with commercial boron-doped diamond conducting anodes was also studied. The influence of the applied current density (15, 30 and 60 mA cm-2) for the same support electrolyte (3 g / L Na2SO4) and the same initial concentration of antibiotics (100 mg dm-3 each) was evaluated. Total mineralization of antibiotics was achieved. In addition, the process was found to be more efficient at current density of 30 mA cm-2. The results demonstrate the importance of the electrochemical processes mediated in the degradation of AMX and AMP. This influence was confirmed by some tests in which the electrolysis was coupled to UV radiation or to ultrasonic radiation. The use of UV radiation results in less efficient degradation, while ultrasound improves the rate of mineralization somewhat compared to the simple electrolyte process.
423

Avaliação físico-química da remediação de solos contaminados por BTEX

Lourenço, Edneia Santos de Oliveira 13 July 2006 (has links)
Made available in DSpace on 2017-05-12T14:48:10Z (GMT). No. of bitstreams: 1 Edneia Santos Oliveira Lourenco.pdf: 5280645 bytes, checksum: bb2af8a91bbf46aad38c5e7d4f97076d (MD5) Previous issue date: 2006-07-13 / This research had as objective to evaluate the efficiency of the reactive means in the removal of aromatical hydrocarbons BTEX (Benzene, Toluene, Etil Benzene and Xylenes) in the ground, coming of leak of gasoline, either in fuel stations or underground tanks, and to explain the physico-chemical mechanisms that occuring on the system. The experiment was carried in laboratorial scale, in two types of permeable reactive barriers (PRB), called of AS (H2O2 + soil ) and ACA (H2O2 + activated coal) with the purpose to reduce the BTEX concentration through oxidation reaction or activated coal adsorption. For analysis of the efficiency of the barriers the BTEX concentrations in the sample of the gasoline when entering in the PRB and of the percolate in times of retention pre-established of 24, 36, 48, 60, 72 and 84 hours, using gas chromatography. The gotten results had shown that the two reactive barriers had reduced the BTEX concentration, being the ACA barrier the most efficient one. The effect has been attributed to the activated coal, which accomplishes the BTEX natural adsorption due to similarity in the polarity of its molecule with the BTEX composites, and still it acts as catalyst improving the oxidant action of hydrogen peroxide. The process, beyond to be efficient in the reduction of the BTEX concentrations, presents low cost and the advantage of the activated coal be regenerated. / Esta pesquisa teve como objetivo avaliar a eficiência dos meios reativos na remoção de hidrocarbonetos aromáticos BTEX (Benzeno, Tolueno, Etilbenzeno e Xilenos) no solo, provenientes de vazamento de gasolina, seja em postos de combustíveis ou em tanques subterrâneos e explicar os mecanismos físico-químicos que ocorrem no sistema. O experimento foi realizado em escala laboratorial, em dois tipos de barreiras reativas permeáveis (BRP), denominadas de AS (H2O2+ solo) e de ACA (H2O2 + carvão ativado) com a finalidade de reduzir a concentração dos BTEX por meio de reação de oxidação ou por adsorção do carvão ativado. Para análise da eficiência das barreiras foram determinadas as concentrações dos BTEX presentes na amostra da gasolina ao entrar na BRP e do percolado em tempos de retenção pré-estabelecidos de 24, 36, 48, 60, 72 e 84 horas, utilizando cromatografia gasosa. Os resultados obtidos mostraram que as duas barreiras reativas reduziram as concentrações dos BTEX, sendo a barreira ACA a mais eficiente. O efeito foi atribuído ao carvão ativado, que realiza a adsorção natural dos BTEX, devido à semelhança na polaridade de sua molécula com os compostos BTEX, além de atuar como catalisador melhorando a ação oxidante do peróxido de hidrogênio. O processo, além de ser eficiente na redução das concentrações dos BTEX, apresenta baixo custo e o carvão ativado pode ser regenerado.
424

Fibrosis development requires mitochondrial Cu,Zn-superoxide dismutase-mediated macrophage polarization

He, Chao 01 May 2014 (has links)
H2O2 generated by alveolar macrophages has been linked to the development pulmonary fibrosis, but little is known about its source, mechanism of production and exact role upon alveolar macrophage activation. In this study, we found that alveolar macrophages from asbestosis patients spontaneously produce high levels of H2O2 and have high expression of Cu,Zn-SOD. Cu,Zn-SOD localized to the mitochondrial intermembrane space (IMS) in asbestosis patients and asbestos induced translocation of Cu,Zn-SOD to the IMS. This process was unique to macrophages and dependent on functional mitochondrial respiration. The presence of at least one of the conserved cysteines was required for disulfide bond formation and mitochondrial translocation. These conserved cysteine residues were also necessary for enzyme activation and H2O2 generation. Cu,Zn-SOD-mediated H2O2 generation was inhibited by knockdown of the iron-sulfur protein, Rieske, in complex III. The role of Cu,Zn-SOD was biologically relevant as Cu,Zn-SOD-/- mice generated significantly less H2O2, had less oxidative stress, and were protected from developing pulmonary fibrosis. This protective mechanism is closely related to the alveolar macrophage activation and polarization in Cu,Zn-SOD-/- mice, as they had a dominant pro-inflammatory phenotype. Macrophages not only initiate and accentuate inflammation after tissue injury, but they are also involved in resolution and repair. The pro-inflammatory M1 macrophages have microbicidal and tumoricidal activity, whereas the M2 macrophages are involved in tumor progression and tissue remodeling, and can be pro-fibrotic in certain settings. We demonstrate that overexpression of Cu,Zn-SOD promoted macrophages polarization into an M2 phenotype. Furthermore, overexpression of Cu,Zn-SOD in mice resulted in a pro-fibrotic environment and accelerated the development of pulmonary fibrosis. The mechanism which Cu,Zn-SOD-mediated H2O2 utilizes to modulate macrophage M2 polarization is through redox regulation of a critical cysteine in STAT6. The polarization process, at least partially, was regulated by epigenetic modulation. We show that STAT6 was indispensable for Cu,Zn-SOD-mediated M2 polarization. STAT6 upregulated Jmjd3, a histone H3 lysine 27 demethylase, and initiated M2 gene transcriptional activation. Targeting STAT6 with leflunomide, which can reduce cellular ROS production and inhibit STAT6 phosphorylation, abolished M2 polarization and ameliorated the fibrotic development. Taken together, these observations provide a novel mechanism for the pathogenesis of pulmonary fibrosis whereby the antioxidant enzyme Cu,Zn-SOD plays a paradoxical role. The study highlights the importance of mitochondrial Cu,Zn-SOD and redox signals in macrophage polarization and fibrosis development. These observations demonstrate that the Cu,Zn-SOD-STAT6-Jmjd3 pathway is a novel regulatory mechanism for M2 polarization and that leflunomide is a potential therapeutic agent in the treatment of pulmonary fibrosis.
425

The role of antioxidants in the hydrogen peroxide-induced opacification of sheep lens.

Lei, Jie January 2006 (has links)
The lens of the eye needs to be transparent with a high refractive index to focus images on the retina. In cataracts the lens becomes opaque, eventually leading to blindness. There are many possible causes of cataract but a lot of evidence implicates oxidative damage as contributing to opacification. This includes epidemiological studies showing that diets rich in antioxidants lowered the prevalence of cataract. This research tested the hypothesis that if cataracts were at least partially caused by oxidative damage then their progression would be slowed by application of antioxidants. The antioxidants used were two plant compounds found in the diet, resveratrol and quercetin. The system used was sheep lenses cultured in Eagles Minimal Essential Medium (EMEM). Lenses remained transparent for up to 7 days in EMEM but became opaque within 24 h when exposed to 1 mM hydrogen peroxide (H2O2). The lens is exposed to H2O2 in vivo as it is found in the aqueous humor. Prior Lenses pre-treated with quercetin reduced but did not prevent opacification. Lens cell death, as determined by measurement of leakage of lactate dehydrogenase, was found to increase with H2O2 and the increase was prevented by pre-treatment with antioxidants. The role of the endogenous antioxidant glutathione was also investigated. It was found that H2O2 decreased the amount of reduced glutathione in the lens cortex and increased the levels of oxidised glutathione but only at levels of 2 mM and above. Thus the results of this research indicate that H2O2 at low concentration (1 mM) is able to damage lens cells and cause opacification without affecting the reduced glutathione levels and that the exogenous antioxidants have some ability to protect the lens.
426

Oxidative stress induced C-Jun N-terminal Kinase (JNK) activation in tendon cells upregulates MMP1 mRNA and protein expression

Wang, Fang, St George Clinical school, UNSW January 2006 (has links)
To explore the potential mechanisms of tendon degeneration, we investigated the role of c-Jun N-terminal Kinase (JNK) activation and the regulation of matrix metalloproteinase 1 (MMP1) in tendon matrix degradation under oxidative stress. JNK and MMP1 activity in samples from normal and ruptured human supraspinatus tendons were evaluated by immunohistochemistry. Real-time quantitative PCR was utilized to evaluate MMP1 mRNA expression and western blotting for MMP1 and JNK protein detection. JNK activation and increased MMP1 activity were found in the torn human supraspinatus tendon tissue, as well as in human tendon cells under in vitro oxidative stress. Inhibition of JNK prevented MMP1 over-expression in oxidative stressed human tendon cells. Results from the current study indicated that stress activated JNK plays an important role in tendon matrix degradation, possibly through upregulating of MMP1.
427

24,25(OH)2D3 and Regulation of Catalase Activity in LNCaP Prostate Cancer

Stahel, Anette January 2007 (has links)
The vitamin D metabolite 1,25(OH)2D3 has long been known to inhibit growth of prostate cancer cells and this has been attributed to a VDR-mediated pathway controlling target gene expression, resulting in cell cycle arrest, apoptosis and differentiation. New research has shown that another vitamin D metabolite, 24,25(OH)2D3, inhibits proliferation of prostate cancer cells as well, more specifically, cells of the line LNCaP. It is not clear exactly how 24,25(OH)2D3 exerts this cancer growth inhibition but it has been shown that it is to some extent regulated via G protein coupled signalling pathways. Catalase is a haem-containing redox enzyme found in the majority of animal cells, plant cells and aerobic microorganisms. This enzyme is very important because it prevents excessive accumulation of the strongly oxidizing agent H2O2 which otherwise can do damage to the cells. Because of this preventive effect of catalase, important cellular processes which generate H2O2 as by-product can proceed safely. Biochemical analysis of catalase has shown that it binds endogenously to 24,25(OH)2D3. The fact that 24,25(OH)2D3 has anti-proliferative effects on prostate cancer cells combined with the fact that it binds to catalase generates the hypothesis that this binding interferes with the essential task of catalase to keep the cell free from accumulation of destructive H2O2, and by means of this interference induces apoptosis. Finding out about the cancer growth inhibiting mechanism behind each vitamin D metabolite is important and may be a lead in the search for a new, better treatment of prostate cancer. The specific aim of this project was to study if and in what way 24,25(OH)2D3 affects the enzymatic activity of catalase in LNCaP cells and to do this with dose and time responses in focus. In this experiment LNCaP cells were incubated for 48 hours together with 24,25(OH)2D3 in five different concentrations, then a catalase assay was performed on the cells including fluorescence-mediated measuring of catalase activity in both treated and untreated cells. The analysis of the result values showed that regardless of dose or time, 24,25(OH)2D3 has no statistically significant effect on catalase activity in cells of the line LNCaP.
428

24,25(OH)2D3 and Regulation of Catalase Activity in LNCaP Prostate Cancer Cells : A Study of Long-term Effects

Stahel, Anette January 2008 (has links)
The vitamin D metabolite 1,25(OH)2D3 has long been known to inhibit growth of prostate cancer cells and this has been attributed to a VDR-mediated pathway controlling target gene expression, resulting in cell cycle arrest, apoptosis and differentiation. New research has shown that another vitamin D metabolite, 24,25(OH)2D3, inhibits proliferation of prostate cancer cells as well, more specifically, cells of the line LNCaP. It is not clear exactly how 24,25(OH)2D3 exerts this cancer growth inhibition but it has been shown that it is to some extent regulated via G protein coupled signalling pathways. Catalase is a haem-containing redox enzyme found in the majority of animal cells, plant cells and aerobic microorganisms. This enzyme is very important because it prevents excessive accumulation of the strongly oxidizing agent H2O2 which otherwise can do damage to the cells. Because of this preventive effect of catalase, important cellular processes which generate H2O2 as by-product can proceed safely. Biochemical analysis of catalase has shown that it binds endogenously to 24,25(OH)2D3. The fact that 24,25(OH)2D3 has anti-proliferative effects on prostate cancer cells combined with the fact that it binds to catalase generates the hypothesis that this binding interferes with the essential task of catalase to keep the cell free from accumulation of destructive H2O2, and by means of this interference induces apoptosis. Finding out about the cancer growth inhibiting mechanism behind each vitamin D metabolite is important and may be a lead in the search for a new, better treatment of prostate cancer. This is a follow-up to an earlier study, and the specific aim of this project was to find out if and in what way 24,25(OH)2D3 affects the enzymatic activity of catalase in LNCaP cells during long-term treatment (up to 48 hours). In this experiment LNCaP cells were incubated for 48 hours together with 24,25(OH)2D3 of the concentration 10-8 M, then a catalase assay was performed on the cells including fluorescence-mediated measuring of catalase activity in both treated and untreated cells. The analysis of the result values showed that despite of the rather high dose used, 24,25(OH)2D3 has no statistically significant effect on catalase activity in cells of the line LNCaP, regardless of time.
429

24,25(OH)2D3 and Regulation of Catalase Activity in LNCaP Prostate Cancer

Stahel, Anette January 2007 (has links)
<p>The vitamin D metabolite 1,25(OH)2D3 has long been known to inhibit growth of prostate cancer cells and this has been attributed to a VDR-mediated pathway controlling target gene expression, resulting in cell cycle arrest, apoptosis and differentiation. New research has shown that another vitamin D metabolite, 24,25(OH)2D3, inhibits proliferation of prostate cancer cells as well, more specifically, cells of the line LNCaP. It is not clear exactly how 24,25(OH)2D3 exerts this cancer growth inhibition but it has been shown that it is to some extent regulated via G protein coupled signalling pathways. Catalase is a haem-containing redox enzyme found in the majority of animal cells, plant cells and aerobic microorganisms. This enzyme is very important because it prevents excessive accumulation of the strongly oxidizing agent H2O2 which otherwise can do damage to the cells. Because of this preventive effect of catalase, important cellular processes which generate H2O2 as by-product can proceed safely. Biochemical analysis of catalase has shown that it binds endogenously to 24,25(OH)2D3. The fact that 24,25(OH)2D3 has anti-proliferative effects on prostate cancer cells combined with the fact that it binds to catalase generates the hypothesis that this binding interferes with the essential task of catalase to keep the cell free from accumulation of destructive H2O2, and by means of this interference induces apoptosis. Finding out about the cancer growth inhibiting mechanism behind each vitamin D metabolite is important and may be a lead in the search for a new, better treatment of prostate cancer. The specific aim of this project was to study if and in what way 24,25(OH)2D3 affects the enzymatic activity of catalase in LNCaP cells and to do this with dose and time responses in focus. In this experiment LNCaP cells were incubated for 48 hours together with 24,25(OH)2D3 in five different concentrations, then a catalase assay was performed on the cells including fluorescence-mediated measuring of catalase activity in both treated and untreated cells. The analysis of the result values showed that regardless of dose or time, 24,25(OH)2D3 has no statistically significant effect on catalase activity in cells of the line LNCaP.</p>
430

24,25(OH)2D3 and Regulation of Catalase Activity in LNCaP Prostate Cancer Cells : A Study of Long-term Effects

Stahel, Anette January 2008 (has links)
<p>The vitamin D metabolite 1,25(OH)2D3 has long been known to inhibit growth of prostate cancer cells and this has been attributed to a VDR-mediated pathway controlling target gene expression, resulting in cell cycle arrest, apoptosis and differentiation. New research has shown that another vitamin D metabolite, 24,25(OH)2D3, inhibits proliferation of prostate cancer cells as well, more specifically, cells of the line LNCaP. It is not clear exactly how 24,25(OH)2D3 exerts this cancer growth inhibition but it has been shown that it is to some extent regulated via G protein coupled signalling pathways. Catalase is a haem-containing redox enzyme found in the majority of animal cells, plant cells and aerobic microorganisms. This enzyme is very important because it prevents excessive accumulation of the strongly oxidizing agent H2O2 which otherwise can do damage to the cells. Because of this preventive effect of catalase, important cellular processes which generate H2O2 as by-product can proceed safely. Biochemical analysis of catalase has shown that it binds endogenously to 24,25(OH)2D3. The fact that 24,25(OH)2D3 has anti-proliferative effects on prostate cancer cells combined with the fact that it binds to catalase generates the hypothesis that this binding interferes with the essential task of catalase to keep the cell free from accumulation of destructive H2O2, and by means of this interference induces apoptosis. Finding out about the cancer growth inhibiting mechanism behind each vitamin D metabolite is important and may be a lead in the search for a new, better treatment of prostate cancer. This is a follow-up to an earlier study, and the specific aim of this project was to find out if and in what way 24,25(OH)2D3 affects the enzymatic activity of catalase in LNCaP cells during long-term treatment (up to 48 hours). In this experiment LNCaP cells were incubated for 48 hours together with 24,25(OH)2D3 of the concentration 10-8 M, then a catalase assay was performed on the cells including fluorescence-mediated measuring of catalase activity in both treated and untreated cells. The analysis of the result values showed that despite of the rather high dose used, 24,25(OH)2D3 has no statistically significant effect on catalase activity in cells of the line LNCaP, regardless of time.</p>

Page generated in 0.0695 seconds