• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel structures and fabrication techniques for the observation of solitons in AlGaAs

Hamilton, Craig James January 1995 (has links)
No description available.
2

Helium and hydrogen plasma waveguides for high-intensity laser channeling

Zgadzaj, Rafal Bogumil 01 February 2011 (has links)
The results of cross polarized pump-probe experiments in preformed He plasma waveguides are reported. Pump and probe have same wavelength and duration of 800nm and 80fs respectively. Peak pump intensity is I[subscript guided] = 0.2X10¹⁸W/cm² ~1000 I[subscript probe]. Single shot probe spectra and mode profiles at the channel exit are discriminated from the pump with a polarization analyzer and captured at various relative time delays [Delta]t. Frequency-domain interference (FDI) between the probe and a weak depolarized component of the pump is observed for [scientific equation]. Although the depolarized component is nearly undetectable through measurement of pump leakage alone, FDI sensitively reveals its substantially non-Gaussian structure. The possible depolarization mechanisms are analyzed. When probe is positioned at the leading edge of the pump, [scientific equation], its spectrum suffers a blue shift not measurable in the transmitted pump itself. The evidence suggests the channel interior is fully ionized and the partially formed channel ends are the origin of both depolarization and blue shift. A robust, pulsed, differentially-pumped plasma channel generation cell for high intensity guiding experiments has been developed. The design includes an axicon lens, windows for transverse interferometry, and permits injection of one or two different gases (main gas plus high Z seed gas) with several millisecond injection times and simultaneous 0.1ms pressure sensing resolution. Very well formed plasma waveguides have been formed in helium as well as hydrogen, at repeatable and well controlled pressures up to 1000Torr, with very uniform interior density, rapid density drop at boundaries, and very low exterior density. The possible danger associated with the use of large amounts of hydrogen was considered and a complex safety system was designed, constructed and used. Extensive analysis of channel profile reconstruction through transverse interferometry was performed. This includes an intuitive, efficient reformulation and extension of the Phase Locked Loop (PLL) carrier fringe demodulation method. It is also demonstrated and explained how and under which conditions artificial fringe frequency multiplication can reduce demodulation distortions in both PLL and Fast Fourier Transform (FFT) methods. / text
3

Modelling high density phenomena in hydrogen fibre Z-pinches

Chittenden, Jeremy Paul January 1990 (has links)
No description available.
4

Využití nízkotlakého plazmatu pro čistění olověných archeologických nálezů / Low pressure plasma application for the surface cleaning of archaeological objects

Bubnová, Kateřina January 2021 (has links)
This diploma thesis builds on my bachelor thesis, which was focused on the application of low-pressure hydrogen plasma and argon-hydrogen plasma on layers of corrosion products. According to results of the experiments, an appropriate temperature for plasma chemical treatment of lead samples was detected. However, the process of corrosion removal through plasma chemical treatment needs to be further optimized to prevent potential damage to the original historical artefacts. Optimization of the treatment process is therefore the main subject of this work’s research. The model samples with artificial corrosion layers with dual composition were prepared. These samples were put to desiccator with sand and organic acid. The samples corroded in environment of acetic acid or formic acid with the aim of creating the corrosion, which would be at least partially simulated with corrosion on the original artefacts. The process of corrosion lasted for eleven months. After that, the samples were dried out under reduced pressure, put to the protecting foil with humid and oxygen absorbers. In contrast with my bachelor thesis where the continuous regime was chosen for the treatment, the pulse regime with three different condition settings is used. Process of experiment was monitored by OES, surface of samples was analyzed by SEM, EDX, XRD methods. Results from experiments with model samples were used for treatment of original artefacts with missing documentation, so their eventual damaging was acceptable.
5

Study On Resistive Switching Mechanism Of Hafnium-doped Silicon Oxide Thin Film

Chu, Tian-Jian 28 August 2012 (has links)
In this study,The bottom electrode(TiN),middle insulator(Hf:SiOx),and top electrode(Pt) were deposited respectively by sputtering technique for fabricating the RRAM with MIM structure.The mole fraction of hafnium were about 5%.Instead of non-doped SiO2 base device has no switching characteristic,the Hf-doped SiO2 RRAM could be operator over 100 times and resistive state was kept stable over 104 second. In this researches,the double layer structure(Pt/Hf:SiO2/Hf:SiO2(doped N2 and NH3)).The Resistance switching characteristics of double layer structure device has particular I-V characteristics due to the doping of N.The doping of NH3 cause hydrogen plasma treatment on double layer device also bring about particular I-V characteristics. The physical mechanism we had proposed were proof by the Current-Voltage fitting and the material analysis.By control stop-voltage,the double layer structure device can operation by multi-bit. The detail physical mechanism is studied by the stable RRAM device(Ti/HfO2/TiN).In this study,the model of reset process we had proposed were proof by the special measurement methods(Constant-voltage sampling) and the principle of chemical reaction mechanism.
6

MD simulation of H2 plasma/graphene interaction for innovative etching processes development / MD simulation of H2 plasma/graphene interaction for innovative etching processes development

Davydova, Alexandra 24 October 2014 (has links)
Graphène est un matériau bidimensionnel unique physique, chimique et les propriétés mécaniques. Il pourrait être prometteur pour de nouvelles applications, mais le contrôle nm échelle de traitement de graphène défis la technologie actuelle, en particulier dans le traitement du plasma, empêchant ainsi le développement de la technologie à base de graphène à l'échelle industrielle. / Graphene is a two-dimensional material with unique physical, chemical and mechanical properties. It could be promising for novel applications, but the nm-scale control of graphene processing challenges current technology, especially in plasma treatment, thus preventing the development of graphene based technology at industrial scale. The main issue associated with plasma/graphene processes is the atomic thickness of the material: graphene is easily damaged upon exposure to reactive plasma. One critical question to answer then: is it possible to use conventional plasma technologies to pattern/clean/dope graphene layers, as is done for other materials in the microelectronic industry?Hydrogen plasmas have been shown to be promising for graphene treatment with minimal damages, but little is known about the fundamental mechanisms involved in graphene etching. Thus, in our work, we applied classical molecular dynamics (MD) simulations of H2 plasma/graphene interaction to assist the development of three important processes. First, MD allowed us to explain the lateral etching mechanisms of graphene nanorribons (GNR) in downstream H2 plasmas, which is an important technological step to produce GNR with a width<10 nm. Second, we show that H2 plasmas can be used to clean polymeric residues from the graphene surface (selective removal of PMMA/photo-resist residues or atmospheric contaminant from its surface). Modeling results combined with experimental work shows very promising results in this application, which is demanded by the entire graphene community. Third, MD simulations were also used to assist the development of multilayer graphene processing by Atomic Layer Etching. Although irreversible damages of graphene are observed when the ion bombarding energy is in the 5-50 eV range, MD predicts a very interesting phenomenon at 20-25eV range: the implantation of hydrogen atoms and subsequent formation of H2 gas sandwiched between first two layers. This causes a pressure rise, which leads to a lift-off of the entire top graphene layer. This result from modeling suggests that H2 plasmas can be used to etch graphene layer by layer in a controlled way through an entirely new mechanism. However, in order to avoid damages of underneath layers during the processing, additional investigations should be provided.In conclusion, several novel and unexpected results were obtained during the present PhD study and MD simulations have proven to be a powerful tool to assist plasma process development. Indeed, based on this fundamental research work an ANR project was launched to develop cleaning, doping and etching processes of graphene in the ICP reactors available in the LTM laboratory, Grenoble, France. MD calculation developed during this PhD will therefore continue to be used to assist further the development of innovative processes.The current PhD project was held in LTM etching group Grenoble, France under supervision of Gilles Cunge and Emilie Despiau-Pujo in the framework of the Chair of Excellence 2010 of Prof. David Graves and financial support of Nanoscience Foundation. We would like to acknowledge collaboration with several groups from Institute Neel (Vincent Bouchiat, Laurence Magaud and Johann Coraux) and our colleagues from CEA-Grenoble, France (Okuno Hanako).
7

Amorphous Silicon Contacts for Silicon and Cadmium Telluride Solar Cells

January 2018 (has links)
abstract: Achieving high efficiency in solar cells requires optimal photovoltaics materials for light absorption and as with any electrical device—high-quality contacts. Essentially, the contacts separate the charge carriers—holes at one terminal and electrons at the other—extracting them to an external circuit. For this purpose, the development of passivating and carrier-selective contacts that enable low interface defect density and efficient carrier transport is critical for making high-efficiency solar cells. The recent record-efficiency n-type silicon cells with hydrogenated amorphous silicon (a-Si:H) contacts have demonstrated the usefulness of passivating and carrier-selective contacts. However, the use of a-Si:H contacts should not be limited in just n-type silicon cells. In the present work, a-Si:H contacts for crystalline silicon and cadmium telluride (CdTe) solar cells are developed. First, hydrogen-plasma-processsed a-Si:H contacts are used in n-type Czochralski silicon cell fabrication. Hydrogen plasma treatment is used to increase the Si-H bond density of a-Si:H films and decrease the dangling bond density at the interface, which leads to better interface passivation and device performance, and wider temperature-processing window of n-type silicon cells under full spectrum (300–1200 nm) illumination. In addition, thickness-varied a-Si:H contacts are studied for n-type silicon cells under the infrared spectrum (700–1200 nm) illumination, which are prepared for silicon-based tandem applications. Second, the a-Si:H contacts are applied to commercial-grade p-type silicon cells, which have much lower bulk carrier lifetimes than the n-type silicon cells. The approach is using gettering and bulk hydrogenation to improve the p-type silicon bulk quality, and then applying a-Si:H contacts to enable excellent surface passivation and carrier transport. This leads to an open-circuit voltage of 707 mV in p-type Czochralski silicon cells, and of 702 mV, the world-record open-circuit voltage in p-type multi-crystalline silicon cells. Finally, CdTe cells with p-type a-Si:H hole-selective contacts are studied. As a proof of concept, p-type a-Si:H contacts enable achieving the highest reported open-circuit voltages (1.1 V) in mono-crystalline CdTe devices. A comparative study of applying p-type a-Si:H contacts in poly-crystalline CdTe solar cells is performed, resulting in absolute voltage gain of 53 mV over using the standard tellurium contacts. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2018
8

Traitement de couches minces et de dispositifs à base de a-Si : H par un plasma d'hydrogène : Etude in situ par ellipsométrie spectroscopique. / Hydrogen plasma treatment of a-Si : H based thin films and devices : in situ spectroscopic ellipsometry study

Larbi, Fadila 09 March 2014 (has links)
Ce travail est une contribution à l'étude de l'interaction entre des couches minces de silicium amorphe hydrogéné (a-Si:H) et un plasma d'hydrogène, dans un réacteur de dépôt par PECVD (Plasma Enhanced Chemical Vapor Deposition). Le suivi in situ de la cinétique de gravure par l'hydrogène atomique est réalisé par ellipsométrie UV-visble. Les différents paramètres de plasma (température, puissance radiofréquence, pression du gaz H2, type de dopage du matériau) pouvant impacter cette cinétique ont été sondés. L'analyse des spectres d'ellipsométrie spectroscopique, à l'aide d'un modèle optique approprié, a permis de mettre en évidence leurs effets sur le temps de formation de la couche modifiée par l'hydrogène, son épaisseur et son excès d'hydrogène, ont été analysés. Le même traitement au plasma d'hydrogène appliqué à des jonctions i/p et i/n, révèle un comportement particulier de la cinétique de gravure dans la zone de jonction. Ce comportement a été interprété dans le cadre d'un modèle simple de diffusion de l'hydrogène sous champ électrique. / This work is a contribution to the study of the interaction between hydrogenated amorphous silicon (a-Si:H) thin films and hydrogen plasma in a PECVD (Plasma Enhanced Chemical Vapor Deposition) reactor. The kinetics of silicon etching by atomic hydrogen is monitored in situ by UV - visble ellipsometry .Several plasma parameters (temperature, RF power, H2 gas pressure, the doping of the material) that may impact the kinetics were probed. An analysis of the spectroscopic ellipsometry spectra, thanks to an appropriate optical model, allowed evidencing their effects on the time constant, the thickness and the hydrogen excess of the H-modified layer.The same hydrogen plasma treatment repeated on i/p and i/n H base junctions revealed a particular behavior of the etching kinetics in the junction zone. This effect is interpreted in the frame of a simple of hydrogen diffusion model under an electric field.
9

Studium plazmochemické redukce korozních vrstev na mědi / Study of plasmachemical reduction of corrosive layers on copper

Šimšová, Tereza January 2008 (has links)
The present diploma thesis concerns the research of plasmachemical reduction of copper corrosion layers. The process was based on using low pressure hydrogen RF plasma in which copper samples are treated for several hours. Four series of copper corrosion layers were prepared in four different corrosion atmospheres. The first two were prepared using saturated vapors of HCl and ammonium acetate that affected copper samples for one week. The second two sets were prepared by samples dipping in HNO3 and H2SO4. EDX analysis confirms visual composition of corrosion layers – chlorides, nitrides and sulphate, respectively. The ammonium acetate produced no corrosion layers and thus this set of samples was omitted. The optical emission spectroscopy was used to find out reactions in a hydrogen RF discharge. At the first, a character of plasma without samples was taken by measuring in continuous and pulsed regime. The integral spectrum intensity (300-700 nm) and intensities of hydrogen atomic lines were observed in the dependences on hydrogen flow, power and duty cycle. After that copper samples were treaded under various conditions in continual and pulse regime, typically at pressure of 170 Pa, 200 W power and hydrogen flow rate of 10.2 ml/min. The integral OH radical spectral intensity in the range of 305 – 330 nm was used as a monitor of plasma treatment process. The experimental results showed that intensities of OH radical depended strongly on the corrosion layer kind as well as on the RF discharge mode. Reduction of corrosion layers treated in the pulsed regime was not so satisfactory then in the continuous regime probably due to lower temperature of sample during the treatment. The total supplied energy into the system was also lower in this case. The sample sputtering was observed during the reduction in continuous regime. It means the corrosion was successfully removed but the process was not stopped at that moment, so it is necessary to propose another additional monitoring process besides observing OH radicals. Our experimental results are the first step in the spread research of plasmachemical treatment of copper made archaeological artifacts.
10

Redukce korozních vrstev na bronzu pomocí vodíkového plazmatu / Reduction of bronze corrosion layers using hydrogen plasma

Miková, Petra January 2011 (has links)
This diploma thesis is focused to the plasma chemical reduction of model corrosion layers prepared on bronze samples. Bronze was the main material for production of the subjects in Bronze Age. First, it was very rare, and therefore was used only for making jewellery and other decorative subjects. Later, the objects of daily use and weapons were produced of bronze. These objects are found and it is necessary to restore him and preserve the cultural heritage for future generations. The research and the optimalization of plasmochemical reduction of model corrosion layers on bronze samples contributes to this. A metallographic grinder was used to create a defined surface, first with the sandpaper P 280 and then after sample 90 degree rotation with the sandpaper P 600. This ensured uniform surface at all bronze samples that is necessary to provide the same corrosion conditions. The grinded samples were washed by ethanol and dried by hot air stream. To prevent contact with the surrounding atmosphere and successive initiation of corrosion, the samples were stored in lockable polyethylene bags. This step was followed by the preparation of model corrosion layers. Hydrochloric and sulfuric acids were chosen as corrosive environments. Petri dish containing 20 ml of the selected acid was placed at the bottom of the desiccator. Samples were placed to the ceramic grate, over the dish, and they were corroded (in vapours of hydrochloric acid for 34 days and in vapours of sulfuric acid for 27 days). The corroded samples were treated using low-pressure hydrogen plasma excited by RF generator. Treatment of samples was carried out in quartz cylindrical reactor (length of 90 cm, inner diameter 9.5 cm) with copper electrodes placed outside. The pressure in the reactor was ranged around 160 Pa at hydrogen flow rate of 50 sccm during the experiments. The continuous and pulse modes (duty cycle of 25%, 50% or 75%) at peak power of 50–300 watts were used for the treatment of 90 minutes duration. The plasma treatment was monitored by optical emission spectroscopy of OH radical using compact Ocean Optics HR4000 spectrometer. Its integral intensity is proportional to the corrosion layer removal. The rotational temperatures of plasma were calculated using selected OH rotational lines, too. The sample temperature during the treatment was measured by thermocouple installed inside the additional non-corroded samples. The reduction of corrosion layer is successful when the maximum of relative intensity of OH radicals is produced and follow gradual decline. The samples which corroded in vapours of sulphuric acid and were treated in pulse modes with duty cycle of 25 % or with delivered power of 50 W has produced no maximum. To the remain samples the maximum although were observed, but reduced corrosion products on the surface were very cohesive. The maximum of relative intensity of OH radicals was observed at all samples corroded in vapours of hydrochloric acid. But there is problem with temperature of sample during experiment. The samples which layer of corrosion product was after experiment incoherent produced the layer of deposit tin. This effect formation at a higher temperature of sample during experiment and therefore with greater deliver energy.

Page generated in 0.081 seconds