• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of Infrastructure Investment for Decarbonization of Public Buses Through Electricity and Hydrogen : The Case Study of Umeå / Optimering av infrastrukturinvesteringar för avkarbonisering av offentliga bussar genom el och vätgas : Fallstudien av Umeå

Rocha Jacob, Maria Inês January 2022 (has links)
Battery electric vehicles and fuel cell vehicles, i.e. hydrogen vehicles, are promising alternatives to internal combustion engine vehicles to reduce GHG emissions from the transport sector. EV charging and hydrogen refuelling infrastructure is crucial to the deployment of alternative fuels in transport. Although several studies have analyzed electric public buses infrastructure, fuel cell buses have not been the target of such extensive analyses. Additionally, there is a gap in the literature regarding the comparison of infrastructure for these two types of vehicles and their cost and refuelling schedule differences. The study aims to conduct a techno-economic analysis of electricity versus hydrogen refuelling infrastructure to decarbonize public buses, using renewable sources to produce renewable electricity and green hydrogen. The outcome is a proposed system design regarding the size of the refuelling station, storage system capacity, renewable energy capacity, on-site hydrogen production system size, and the optimized refuelling schedule. The system is modelled to minimize the overall system cost while maintaining the current bus service level. The impact of electricity market prices, demand charges and varying bus energy demand in the optimal system configuration and schedule is also addressed. Scenarios are developed to study different levels of new installed renewable capacity integration and how these affect the cost, bus refuelling schedules and infrastructure design. The mixed-integer linear programming problem was modelled using Python. The model is applied to the case study of one bus line in Umeå. One terminal station was chosen to place the refuelling stations. The results show that the most economical option is electrifying the line with electricity supply only from the grid. For scenarios with additional renewable energy capacity installed, the option with 50% integration of new installed capacity is the most economically viable. In both these cases, there is no installation of BESS at the charging station. Electric buses infrastructure is cheaper than hydrogen infrastructure in all scenarios, but these values converge as renewable energy integration increases. For hydrogen infrastructure, the scenario with 50% renewable energy integration is the least costly. Although electric bus infrastructure is more economical than hydrogen infrastructure, hydrogen buses present advantages in terms of significantly higher range and thus higher flexibility for refuelling. Therefore, in the decision-making process to replace a fossil fuel bus line with an alternative fuel bus line, one must consider the multi-dimensional level of the different options. / Batterielektriska fordon och bränslecellsfordon, dvs. vätgasfordon, är lovande alternativ till fordon med förbränningsmotorer för att minska växthusgasutsläppen från transportsektorn. Infrastruktur för laddning av elfordon och tankning av vätgas är avgörande för att alternativa bränslen ska kunna användas inom transportsektorn. Även om flera studier har analyserat infrastrukturen för offentliga elbussar har bränslecellsbussar inte varit föremål för sådana omfattande analyser. Dessutom finns det en lucka i litteraturen när det gäller jämförelsen av infrastruktur för dessa två typer av fordon och deras skillnader i fråga om kostnader och tankningsschema. Syftet med studien är att genomföra en teknisk-ekonomisk analys av infrastruktur för tankning av el respektive vätgas för att avkarbonisera offentliga bussar, med hjälp av förnybara källor för att producera förnybar el och grön vätgas. Resultatet är ett förslag till systemutformning med avseende på tankstationens storlek, lagringssystemets kapacitet, kapaciteten för förnybar energi, storleken på systemet för vätgasproduktion på plats och det optimerade tankningsschemat. Systemet modelleras för att minimera den totala systemkostnaden samtidigt som den nuvarande service nivån förbussarna bibehålls. Effekten av elmarknadspriser, efterfrågeavgifter och varierande energiefterfrågan från bussarna på den optimala systemkonfigurationen och schemat behandlas också. Scenarier utvecklas för att studera olika nivåer av nyinstallerad förnybar kapacitet och hur  dessa påverkar kostnaden, bussarnas tankningsscheman och infrastrukturens utformning. Det linjära programmeringsproblemet med blandade heltal modellerades med hjälp av Python. Modellen tillämpas på fallstudien av en busslinje i Umeå. En ändstation valdes ut för att placera tankstationerna. Resultaten visar att det mest ekonomiska alternativet är att elektrifiera linjen med elförsörjning endast från nätet. För scenarier med ytterligare installerad kapacitet för förnybar energi är alternativet med 50 % integrering av ny installerad kapacitet det mest ekonomiskt lönsamma. I båda dessa fall finns det ingen installation av BESS vid laddningsstationen. Infrastrukturen för elbussar är billigare än infrastrukturen för vätgas i alla scenarier, men dessa värden närmar sig varandra när integrationen av förnybar energi ökar. När det gäller vätgasinfrastruktur är scenariot med 50 % integrering av förnybar energi det minst kostsamma. Även om infrastrukturen för elbussar är billigare än infrastrukturen för vätgasbussar har vätgasbussar fördelar i form av betydligt större räckvidd och därmed större flexibilitet när det gäller tankning. I beslutsprocessen för att ersätta en busslinje med fossila bränslen med en busslinje med alternativa bränslen måste man därför ta hänsyn till de olika alternativens flerdimensionella nivå.

Page generated in 0.1207 seconds