• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 16
  • 12
  • 4
  • 1
  • 1
  • Tagged with
  • 66
  • 16
  • 14
  • 14
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seasonal Variability of Groundwater Contribution to Watershed Discharge in Discontinuous Permafrost in the North Klondike River Valley, Yukon

Lapp, Anthony January 2015 (has links)
The objectives of this thesis were: (1) to quantify seasonal groundwater contribution to total stream discharge and (2) further our understanding of sub-arctic carbon sources and pathways within a sub-arctic discontinuous permafrost river catchment. Twenty-two samples were taken from the North Klondike River, 14 samples from 5 of its tributaries, and 46 rain and snowmelt samples from the Dawson City Airport, Yukon, Canada,. During the winter months, groundwater is responsible for greater than 95% of total river discharge. Spring freshet and summer flow bring snowmelt and precipitation, contributing anywhere from 30% to greater than 60% of total river discharge. Groundwater is characterised by high concentrations of geogenic solutes from weathering during recharge, dissolved inorganic carbon, and carbon-14 activities of 0.61 pMC. Tritium activities indicate a fast moving system, with groundwater ages measuring less than 10 years. The most significant discharge of organic carbon from the system is during spring freshet (434,192 kg carbon). Primary productivity within the system is estimated to be 10.2 grams of carbon per metre squared, with approximately 96% of carbon being sequestered or emitted as carbon dioxide.
2

A hydrograph-based prediction of meander migration

Wang, Wei 16 August 2006 (has links)
Meander migration is a process in which water flow erodes soil on one bank and deposits it on the opposite bank creating a gradual shift of the bank line over time. For bridges crossing such a river, the soil foundation of the abutments may be eroded away before the designed lifetime is reached. For highways parallel to and close to such a river, the whole road may be eaten away. This problem is costing millions of dollars to TxDOT in protection of affected bridges and highway embankments. This research is aimed at developing a methodology which will predict the possible migration of a meander considering the design life of bridges crossing it and highways parallel to it. The approaches we use are experimental tests, numerical simulation, modeling of migration, risk analysis, and development of a computer program. Experimental tests can simulate river flow in a controlled environment. Influential parameters can be chosen, adjusted, and varied systematically to quantify their influence on the problem. The role of numerical simulation is to model the flow field and the stress field at the soil-water interface. Migration modeling is intended to integrate the results of experimental tests and numerical simulations and to develop a model which can make predictions. The Hyperbolic Model is used and its two major components Mmax equation and τmax equation are developed. Uncertainties in the parameters used for prediction make deterministic prediction less meaningful. Risk analysis is used to make the prediction based on a probabilistic approach. Hand calculation is too laborious to apply these procedures. Thus the development of a user friendly computer program is needed to automate the calculations. Experiments performed show that the Hyperbolic Model matches the test data well and is suitable for the prediction of meander migration. Based on analysis of shear stress data from numerical simulation, the τmax equation was derived for the Hyperbolic Model. Extensive work on the simplification of river geometry produced a working solution. The geometry of river channels can be automatically simplified into arcs and straight lines. Future hydrograph is critical to risk analysis. Tens of thousands of hydrographs bearing the same statistical characteristics as in history can be generated. The final product that can be directly used, the MEANDER program, consists of 11,600 lines of code in C++ and 2,500 lines of code in Matlab, not including the part of risk analysis. The computer program is ready for practice engineers to make predictions based on the findings of this research.
3

Hydrologic risk assessment framework for Alberta's green zone

Wagner, Michael Johann Unknown Date
No description available.
4

Hydrologic risk assessment framework for Alberta's green zone

Wagner, Michael Johann 11 1900 (has links)
In this dissertation, a hydrologic classification approach was tested using the shape factor of hydrographs to represent variation in streamflow regimes across Alberta. Hydrograph shape factor was effective at separating the forested landbase into 6 spatially distinct regions. Further statistical analysis of hydrometric data showed each region to have unique streamflow characteristics. Differences in physiography between regions were evident and strong associations were found between physical catchment characteristics and hydrologic variables describing streamflow magnitude and timing. In a case study, findings were used to define the regional natural range of hydrologic variation and applied into a watershed assessment tool evaluating the potential changes to streamflow regimes as a result of forest disturbance. This analysis showed that because of hydrologic variability among regions, spatial variation in sensitivity to harvest likely exists within the forested landbase, highlighting the need for development of regional criteria and indicators for sustainable management of water resources. / Forest Biology and Management
5

Development and Evaluation of a Gis-Based Spatially Distributed Unit Hydrograph Model

Kilgore, Jennifer Leigh 23 December 1997 (has links)
Synthetic unit hydrographs, which assume uniform rainfall excess distribution and static watershed conditions, are frequently used to estimate hydrograph characteristics when observed data are unavailable. The objective of this research was to develop a spatially distributed unit hydrograph (SDUH) model that directly reflects spatial variation in the watershed in generating runoff hydrographs. The SDUH model is a time-area unit hydrograph technique that uses a geographic information system (GIS) to develop a cumulative travel time map of the watershed based on cell by cell estimates of overland and channel flow velocities. The model considers slope, land use, watershed position, channel characteristics, and rainfall excess intensity in determining flow velocities. The cumulative travel time map is divided into isochrones which are used to generate a time-area curve and the resulting unit hydrograph. Predictions of the SDUH model along with the Snyder, SCS, and Clark synthetic unit hydrographs were compared with forty observed storm events from an 1153-ha Virginia Piedmont watershed. The SDUH model predictions were comparable or slightly better than those from the other models, with the lowest relative error in the peak flow rate prediction for 12 of the 40 storms, and a model efficiency of at least 0.90 for 21 of the storms. Despite the good predictions of the hydrograph peak flow rate and shape, the time to peak was underpredicted for 34 of the 40 storms. Runoff from the 40 storms was also generated for two subwatersheds (C: 462 ha; D: 328 ha) in Owl Run to assess the effect of scale on the SDUH model. Peak flow rate predictions were more accurate for the entire watershed than for either subwatershed. The time to peak prediction and model efficiency statistics were comparable for the entire watershed and subwatershed D. Subwatershed C had poorer predictions, which were attributed to a large pond in the main channel, rather than to scale effects. The SDUH model provides a framework for predicting runoff hydrographs for ungauged watersheds that can reflect the spatially distributed nature of the rainfall-runoff process. Predictions were comparable to the other synthetic unit hydrograph techniques. Because the time to peak and model efficiency statistics were similar for the 1153-ha watershed and a 328-ha subwatershed, scale does not have a major impact on the accuracy of the SDUH model. / Master of Science
6

An automated toolkit for hyetograph-hydrograph analysis

Tang, Weigang 19 November 2014 (has links)
Understanding the nature of streamflow response to precipitation inputs is at the core of applied hydrological applications such as flood forecasting and water resource management. Indices such as the runoff ratio, recession constant and response time of a watershed retain an important place in hydrology decades after their establishment as metrics to compare watersheds and understand the impact of human activity, geology, geomorphology, soils and climate on precipitation-runoff relations. Extracting characteristics of the hyetograph-hydrograph relationship is often done manually, resulting in subjective and inconsistent results that require considerable time. In addition, there are a large number of metrics proposed to analyze the hyetograph-hydrograph relationship and hydrograph shape that are typically subjective in application. The objective of this research is to develop an automated and flexible toolkit for rainfall-runoff analysis. Using the MATLAB language, a series of inter-related functions are created to extract rainfall-runoff events from time-series of rainfall and streamflow data and compute commonly used characteristics of the hyetograph-hydrograph relationship. Furthermore, a number of input parameters are introduced to add flexibility to the toolkit. This toolkit has been applied successfully to four watersheds in Canada and Scotland. A subsequent analysis was performed assessing the sensitivity of parameter selection on the toolkit performance, and a number of suggestions for users provided. It is anticipated that this toolkit will provide hydrologists with a rapid objective method of analyzing rainfall and runoff data where in the past manual procedures resulted in considerable subjectivity in results. / Thesis / Master of Science (MSc)
7

Dissolved Road Salt Transport in Urban and Rural Watersheds in Massachusetts

Tedder, Newton William January 2009 (has links)
Thesis advisor: Rudolph Hon / Thesis advisor: Yvette Kuiper / Chloride-based deicers (NaCl, CaCl<sub>2</sub>, MgCl<sub>2</sub>), also referred to as road salt, are the most common substances used in maintaining safe roadway surfaces during the winter months. Upon application, road salt reacts with the accumulated snow or ice to form brine equilibrium solutions along the liquidus line in the salt-water system. Dissolved salts dissociate, leading to increased concentrations of the respective ions in nearby soils, surface water, and groundwater. Of the ions present in road salt, chloride has the advantage of tracking all chloride deicers at the same time and since chloride ions are conservative tracers in soils it stays unaffected by ionic exchange interferences. This study explores the mechanisms of chloride return flows by investigating chloride dissolved loads, chloride concentrations in stream waters, seasonal patterns, and changes over the course of four years in two separate watersheds in Massachusetts with differing degrees of urbanization. The chloride tracking technique used in this study is based on calibrated chloride concentrations obtained from specific conductance signals recorded every 15 minutes by automatic recording systems at two locations, one in rural central Massachusetts and the other in urban eastern Massachusetts. These systems are maintained by the USGS, which also provide the simultaneously recorded stream flow datasets. The dissolved chloride load carried by each river is calculated for each single 15-minute interval by multiplying water volume with the corresponding chloride concentration, resulting in a total of over 34,000 data points per annum per site. Hydrograph separation techniques were used to separate dissolved load transported by each river into two separate flow components, event flow resulting from precipitation events, and baseflow resulting from groundwater discharge. Well defined hydrograph baseflow supported periods yield consistent chloride concentrations independent of the season at either urban or rural study sites. Comparison of direct runoff dissolved chloride loads with the total annual dissolved loads suggests that only a small fraction of the deicers actually removed during the overland runoff events and that a minimum of 60% of the total load discharged each year in both urban and rural systems is transported by groundwater. From groundwater recharge by brines rural watersheds are currently retaining as much as 95% of the total chloride applied to roadways each year while urban and suburban watersheds may only retain 75% of the total chloride applied to roadways each year. The increased retention of chloride in rural areas is likely due to the decreased amount of chloride transported during winter seasons as event flow compared to urban watersheds. / Thesis (MS) — Boston College, 2009. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Geology and Geophysics.
8

Separace odtoku na datech z povodí Jenínského toku za použití různých metod / Separation of runoff based on data from Jenínský stream catchment area using various methods

KUBEŠ, Ondřej January 2013 (has links)
The aim of this paper is to describe and compare various methods of runoff separation. Therefore it is necessary to explain basic hydrological terms that are important for understanding the water regime of landscape. Long-term monitoring of the water regime of the whole catchment area can provide successful detection of hydrological extremes such as droughts or devastating floods. The paper is divided in two parts. The theoretical part includes the literature rerview explaining basic hydrological terms and individual components of water cycle in nature, summary of methods usually used for runoff separation, and the description of the applied methods. The practical part specifies the locality of Jenínský stream, located in the Český Krumlov district. This part further reflects separation of runoff based on the daily runoffs. Methods GROUND, MPGM and Chapman digital filter have been chosen to compare primary runoff and direct runoff. We have also considered the method of separation of minimal monthly runoff according to Kille for seven-year period in relation to the methods mentioned above. Finally, we have chosen several discharge waves for the method of recession curve analysis. The paper compares direct and primary runoff separated by individual methods in the catchment area of our interest.
9

Mountain-Block Recharge to the Cache Valley Principal Aquifer and Geochemical Controls on Groundwater Movement in Alpine Karst

Sorsby, Skyler J. 01 May 2019 (has links)
Groundwater is documented to flow through solution-widened fractures and bedding planes in limestone and dolostone units in low-relief topography. This enhancement, or karstification, is much harder to study in alpine environments like the Bear River Range of northern Utah. This is problematic, due to the fact that the Bear River Range karst aquifer system supplies the City of Logan with a large quantity of water at Dewitt Spring. Furthermore, the karst aquifer sustains the Logan River for much of the year, and may allow groundwater to flow directly in the subsurface to the Cache Valley principal aquifer system. Flow measurements along the Logan River constrain a minimum volume of 2.32x106 m3 /y (1.88x103 af/y) that could recharge the Cache Valley principal aquifer. Hydraulic characteristics of alpine karst were estimated by analysis of major ions, stable isotopes, and dissolved gases in spring waters. These data reflect quick groundwater flow through caverns, with no evidence for “diffuse” flow anticipated by some to occupy interstitial space. In fact, the oldest reasonable estimated recharge age for groundwater is 70 years. Young recharge, fast flow, and low storage capability indicate that alpine karst aquifers are very sensitive to droughts and that related water resources are vulnerable to longer-term changes in climate.
10

Surface-Water and Groundwater Interactions of a Stream Reach and Proposed Reservoir within the Pascagoula River Basin: George County, Mississippi

Killian, Courtney 09 May 2015 (has links)
This research had two main objectives: quantify surface-water and groundwater interactions along a stream reach, and determine the hydraulic conductivity at the site where two reservoirs are proposed. The objectives of this research aim to help maintain stream ecology and increase surface water storage for recreational and industrial purposes. The stream reach, located in the Pascagoula River Basin of southeast Mississippi, begins at Lake Okatibbee and terminates at Pascagoula into the Gulf of Mexico. Four USGS continuous gauging stations provided more than forty years of stream discharge data for a hydrograph baselow-recession analysis, which determined the baseflow component within the stream. The analysis showed that baseflow decreases along the stream reach and increases again before reaching the Gulf of Mexico. Thirteen borehole samples were collected at the sites of the proposed reservoirs in George County, Mississippi to determine the hydraulic conductivity of the sediments, which showed high a hydraulic conductivity.

Page generated in 0.0543 seconds