• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 191
  • 35
  • 35
  • 31
  • 13
  • 8
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 422
  • 67
  • 59
  • 57
  • 55
  • 44
  • 44
  • 36
  • 35
  • 32
  • 31
  • 31
  • 29
  • 28
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Sorption and Biodegradation of Organic Solutes Undergoing Transport in Laboratory-scale and Field-scale Heterogeneous Porous Media.

Piatt, Joseph John, January 1997 (has links) (PDF)
Thesis (Ph. D. - Soil, Water and Environmental Science)--University of Arizona, 1997. / Includes bibliographical references (leaves 147-157).
12

Anti-fog coatings using the super-hydrophobic approach

Almeida, Riberet. January 2008 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2008. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file and two media files. Title from title screen of research.pdf file (viewed on August 10, 2009) Includes bibliographical references.
13

Fabrication of surface micro- and nanostructures for superhydrophobic surfaces in electric and electronic applications

Xiu, Yonghao. January 2008 (has links)
Thesis (Ph.D)--Chemical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Hess, Dennis W.; Committee Chair: Wong, C. P.; Committee Member: Breedveld, Victor; Committee Member: Koros, William J.; Committee Member: Meredith, Carson; Committee Member: Nair, Sankar. Part of the SMARTech Electronic Thesis and Dissertation Collection.
14

A Grand Canonical Monte Carlo Molecular Study of a Weak Polyampholyte

Jimenez, Arturo Martinez 05 1900 (has links)
Over the last few decades, there has been an increasing interest in the study of charged polymers for applications such as desalination of water, flocculation, sewage treatment, and enhanced oil recovery. Polyelectrolyte chains containing both positively and negatively charged units (polyampholytes) have been recently studied as viscosity-control agents in enhanced oil recovery, and as entrapping macromolecules for protection and delayed release of enzymes in hydraulic fracturing. In this study we performed Monte Carlo molecular simulations in a grand canonical ensemble to study the behavior of a weak polyampholyte in a dilute regime. Weak polyampholytes have the ability to dissociate in a limited pH, which makes them interesting for applications that require a pH-triggerable response. The titration behaviors of diblock and random polyampholytes are simulated as a function of solvent quality, electrostatic strength, and salt concentration. For diblock polyampholyte chains in hydrophobic solvents, transition between tadpole-like and globule conformation occurs with variations in the solution pH. Random polyampholytes present extended, globule, and pearl-necklace conformations at different solvent conditions and pH values. At high ionic strength, electrostatic interactions in the polyampholytes become screened and the chains are mostly in globule state.
15

Functionality hydrophobicity relationships of selected food proteins

Arbabzadeh, Sima-Dokht January 1993 (has links)
No description available.
16

Sink Electrical Discharge Machining of Hydrophobic Surfaces

Guo, Changcheng January 2019 (has links)
Water-repellent behaviour, known as hydrophobicity, has recently attracted a great deal of interest due to its applications, such as anti-icing and self-cleaning. The phenomenon of hydrophobicity found in surfaces like lotus leaves is manifest by a hierarchical structure on low-energy surfaces. Fabrication of hydrophobic surfaces has thus far been largely accomplished on polymers and colloidal materials, which are limited by poor mechanical strength that leads to performance degradation over time. To this end, fabrication of a robust metallic hydrophobic surface is the focus of this research. Sink electrical discharge machining is demonstrated to generate hydrophobic surfaces in 7075 aluminum alloy with water contact angles in excess of 150˚. / Thesis / Master of Applied Science (MASc)
17

The expression, purification and structural studies of a sunflower oleosin

Alexander, Lucille Grace January 1999 (has links)
No description available.
18

Enzyme immobilisation on colloidal liquid aphrons (CLAs) and the development of a continuous membrane bioreactor

Lamb, Stephen Brian January 1999 (has links)
No description available.
19

Rapid and low-cost mass fabrication of true three-dimensional hierarchical structures with dynamic soft molding and its application in affordable and scalable production of robust and durable whole-teflon superhydrophobic coating

Li, Wanbo 01 February 2019 (has links)
Superhydrophobic (SH) surfaces equipped on the skins of natural living beings give them trumps of self-cleaning, anti-bacterial, water harvest, and directional liquid transport, etc., to survive in harsh environments. Bioinspired Superhydrophobic (SH) surfaces have developed many emerging functions, such as self-cleaning, anti-bacterial, water harvest, anti-icing, anti-corrosion, oil-water separation, and many other fascinating functions. However, the implementations of SH coating in real world are still in its infancy, due to (i) the poor performance in the harsh real-world environment and industrial process application, where a multi-level robustness including the mechanical, chemical, and thermal robustness, as well as the strong adherent strength to substrates, is strictly required; (ii) the lack of a technology for facile and mass production. In the light of that any non-perfluorinated component in the formula of an SH coating inevitably generates vulnerable points to the external invasions and the functional applications of SH coatings require control surface topography, we here propose an SH coating entirely made of perfluorinated materials (referred to as Teflon). To achieve this goal, we developed a complete strategy involving material, fabrication, and applications. Firstly, we developed a feasible dynamic soft molding method for the fabrication of three-dimensional (3D) structures. This method paves a road not only to the fabrication of whole-Teflon SH coatings but also to the practical adoption of many other important technologies based on 3D structures. Secondly, we generated whole-Teflon and multi-resist SH coatings by using this method and tightly attached them to different substrates with superior adhering strength surpassing the conventional work. Thirdly, we performed a proof-of-concept demonstration of a roll-to-roll (R2R) hot molding process, which has the potential of translating the lab-scale and plate-to-plate fabrication to industrial mass production. Finally, some fundamental mechanisms and problems of the multifunctional applications in self-cleaning, anti-bacterial fouling, and anti-icing are studied. The outcomes are expected to provide insight understandings on the multifunctional SH coating and move SH coatings toward real-world application.
20

The impact of soil moisture content and particle size variations on heat flow in laboratory simulated wildfires

Showman, Sara Jean 01 May 2012 (has links)
Hydrophobic soils developing as a consequence of wildfires have a large impact on the environment. A greater understanding of when ideal hydrophobic development conditions occur is needed. This thesis aims to identify the impact of varying both soil moisture and soil particle size on the locations for ideal hydrophobic soil development under different intensities of burns. It builds on experiments completed previously to further the understanding of the effect of particle size on heat flow. All experiments done in the previous study used only dry sediment. This study focused on the role of moisture in hydrophobic soil development. A secondary goal of this thesis is to provide an opportunity to further explore convection as a mechanism of soil heating. An indoor wildfire simulator was employed, consisting of an array of propane burners, to determine the impact of varying factors under controlled conditions. The temperature levels and durations selected were based on data obtained from measurements taken during full-scale field based burns. Thermocouples were used to measure temperatures of the flames and temperatures at different depths within the sediment. Determining the impact of soil texture was done by running burns with sand, clay-loam, silt, and clay. The impact of soil moisture was determined by testing each of the sediment types with different levels of moisture. In total, twenty-four burns were completed with peak temperatures of 600 degrees C, 900 degrees C, and 1200 degrees C in order to simulate typical chaparral fires.

Page generated in 0.059 seconds