251 |
Theoretical Prediction of Changes in Protein Structural Stability upon Cosolvent or Salt Addition and Amino-acid Mutation / 共溶媒や塩の添加およびアミノ酸置換に伴う蛋白質立体構造安定性変化の理論的予測Murakami, Shota 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第20481号 / エネ博第350号 / 新制||エネ||70(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 木下 正弘, 教授 森井 孝, 教授 片平 正人 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
|
252 |
The Amphiphilicity of ACP Helices: A Means of Macromolecular Interaction?Ernst-Fonberg, Mary L., Tucker, Margie Mc, Fonberg, Ignacy B. 11 May 1987 (has links)
ACP interacts with diverse proteins in an unknown way. Possibly there is a similar mode of interaction between ACP and all ACP-binding proteins, the amphiphilic helix. The hydrophobicities of helices from 4 different ACPs were compared. Hydrophobic moment plots were prepared for ACP helices and those of many EF hand calcium-binding proteins. Both groups of proteins occupied the same region of the plot.
|
253 |
Hydrophobicity of Magnetite Coating on Low Carbon SteelAkhtar, Mst Alpona 08 1900 (has links)
Superhydrophobic coatings (SHC) with excellent self-cleaning and corrosion resistance property is developed on magnetite coated AISI SAE 1020 steel by using a simple immersion method. Roughness measurement, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), contact angle measurement (CAM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS), and qualitative characterization of self-cleaning behavior, antifouling property and durability of the coatings are assessed. A water contact angle as high as 152o on the coated surface with excellent self-cleaning and resistivity to corrosion and good longevity in atmospheric air is obtained. Self-cleaning test results prove that these surfaces can find applications in large scale production of engineering materials. Potentiodynamic polarization tests and EIS tests confirm that the superhydrophobic low carbon steel surfaces have better resistance to corrosion compared to bare steel and magnetite coated steel in 3.5% NaCl solution. But the longevity of the coated steel surfaces in 3.5% salt solution is limited, which is revealed by the immersion durability test. However, hydrophobic coatings (HC) have better stability in normal tap water, and it can stay unharmed up to 15 days. Finally, hydrophobic coatings on low carbon steel surface retains hydrophobic in open atmosphere for more than two months. Results of this investigation show surface roughness is a critical factor in manufacturing hydrophobic steel surfaces. Higher contact angles are obtained for rougher and more uniform surfaces. A linear mathematical relationship (y =6x+104; R2 = 0.93) is obtained between contact angle (y) and surface roughness (x).
|
254 |
Designing bioinspired materials with tunable structures and properties from natural and synthetic polymersVaradarajan, Anandavalli 08 August 2023 (has links) (PDF)
Biological systems are composed of complex materials which are responsible for performing various functions, such as providing structural support, mobility, functional adaptation to the environment, damage repair, and self-healing. These complex materials display excellent mechanical properties and can rapidly adapt to external stimuli. Thus, nature inspires in terms of source materials, functions, and designs to develop new-generation structural and functional materials. Polymers (natural or synthetic) are excellent sources of developing materials to mimic the functions of soft segments in biological systems. This dissertation focuses on synthesizing and characterizing two different materials with tunable structures and properties: complexes from natural polysaccharides or polyelectrolytes and bioinspired hydrogels from synthetic polymers. Oppositely charged polyelectrolytes can form polyelectrolyte complexes (PECs) due to the electrostatic interactions. The structure and properties of PECs can be tuned by varying the salt concentration, as the addition of salt can facilitate associative phase separation. PECs were prepared from two biopolymers, positively charged chitosan and negatively charged alginate. Rheological experiments for the complexes displayed a tunable shear modulus with changing salt concentrations. The microstructural study conducted using small-angle X-ray scattering provided insights regarding the length scales of these complexes, and the results follow the observed rheological and phase behavior. Elastic biopolymers such as resilin display remarkable mechanical properties, including high stretchability and resilience, which many species exploit in nature for mechanical energy storage to facilitate their movement. Such properties of resilin have been attributed to the balanced combination of hydrophilic and hydrophobic segments present in the chain. In this work, we synthesized hydrogels with hydrophilic and hydrophobic components to mimic the properties of resilin. With this system, we determined the tensile, retraction (ability to revert to the original state after stretching), and swelling properties when (i) the concentration of the hydrophobic polymer was varied and (ii) additional hydrophobic components were included. The stretchability, stiffness, and strength of the gels varied as the compositions were altered. The fundamental understanding of the structure-property-function relationship for materials presented in this work provides insights into engineering materials for applications such as tissue engineering, drug delivery, wound healing, artificial muscles, soft robotics, and power amplification.
|
255 |
Investigating The Relationship Between Surface Topology And Functional Characteristics For Injection Moulded Thermoplastic ComponentsIsrar Raja, Tehmeena January 2021 (has links)
Bacteria are known to adhere to surfaces, which allows for the formation of
biofilms, possibly causing a surge in hospital-offset infections, perilous
diseases, and in some cases, death. Although certain bacteria are present in
the natural flora of the human skin, some present extreme clinical
significance due to the ability to transmit and adhere, and can be resistant to
antibiotics. They also evolve over time to survive in harsh environmental
conditions.
Current research reveals that design of plastic surfaces containing
submicron structures, is becoming a popular approach to tackle issues
concerning infection transmission, with inspiration being derived from
biomimetics and self-cleaning surfaces, such as the surface of a gecko skin,
and the hydrophobic wax layer of forest leaves. Main barriers to adoption
include that these surfaces alone are difficult to manufacture on 3D products,
expensive to fabricate on a large scale and do not last long when subjected
to environmental wear.
Replication of nano-scale ridges was carried out using micro-injection, and
the various samples were characterised using a range of tools to determine
physical and biomechanical parameters. The sample surfaces were then
cultured with the pathogenic bacterium Staphylococcus aureus under several
environmental conditions, and the results were statistically analysed to reveal
that anti-fouling LIPSS (laser induced periodic surface structures) ridges
perform better to reduce bacteria cell-substrate adhesion, when compared to
flat surfaces, or surfaces containing dual structures (anti-fouling ridges
combined with anti-wear walls). It was therefore demonstrated that nanotextured
polymeric surfaces with hydrophobic characteristics have
exceptional non-fouling properties, preventing S. aureus, a very significant bacterial strain, from initial adhesion, a critical primary mechanism in its
ability to proliferate.
Collectively, the findings of this study strongly support the literature,
suggesting that the bacteria struggle to adhere onto polymeric topography
with increased water contact angles and simple nanostructures. However,
the addition of certain anti-wear micro-features increased bacterial adhesion,
reducing the efficacy of the non-fouling nanostructures from preventing
biofilm formation.
|
256 |
Biomaterials and the Foreign Body Reaction: Surface Chemistry Dependent Macrophage Adhesion, Fusion, Apoptosis, and Cytokine ProductionJones, Jacqueline Ann 16 April 2007 (has links)
No description available.
|
257 |
ENHANCED BIOLOGICAL OXIDATION OF HYDROPHOBIC COMPOUNDS UNDER DYNAMIC LOAD IN A TRICKLE BED AIR BIOFILTERZehraoui, Abderrahman January 2013 (has links)
No description available.
|
258 |
Protein Engineering Hydrophobic Core Residues of Computationally Designed Protein G and Single-Chain Rop: Investigating the Relationship between Protein Primary structure and Protein Stability through High-Throughput ApproachesLi, Weiyi 29 September 2014 (has links)
No description available.
|
259 |
Studies in dendritic secondary structural controlPaul, Noel Michael 06 January 2005 (has links)
No description available.
|
260 |
Development of novel micro-embossing methods and microfluidic designs for biomedical applicationsLu, Chunmeng 22 September 2006 (has links)
No description available.
|
Page generated in 0.0402 seconds