• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hyper-optimalizace neuronových sítí založená na Gaussovských procesech / Gaussian Processes Based Hyper-Optimization of Neural Networks

Coufal, Martin January 2020 (has links)
Cílem této diplomové práce je vytvoření nástroje pro optimalizaci hyper-parametrů umělých neuronových sítí. Tento nástroj musí být schopen optimalizovat více hyper-parametrů, které mohou být navíc i korelovány. Tento problém jsem vyřešil implmentací optimalizátoru, který využívá Gaussovské procesy k predikci vlivu jednotlivých hyperparametrů na výslednou přesnost neuronové sítě. Z provedených experimentů na několika benchmark funkcích jsem zjistil, že implementovaný nástroj je schopen dosáhnout lepších výsledků než optimalizátory založené na náhodném prohledávání a snížit tak v průměru počet potřebných kroků optimalizace. Optimalizace založená na náhodném prohledávání dosáhla lepších výsledků pouze v prvních krocích optimalizace, než si optimalizátor založený na Gaussovských procesech vytvoří dostatečně přesný model problému. Nicméně téměř všechny experimenty provedené na datasetu MNIST prokázaly lepší výsledky optimalizátoru založeného na náhodném prohledávání. Tyto rozdíly v provedených experimentech jsou pravděpodobně dány složitostí zvolených benchmark funkcí nebo zvolenými parametry implementovaného optimalizátoru.
2

Evoluční algoritmy pro vícekriteriální optimalizaci / Evolutionary Algorithms for Multiobjective Optimization

Pilát, Martin January 2013 (has links)
Multi-objective evolutionary algorithms have gained a lot of atten- tion in the recent years. They have proven to be among the best multi-objective optimizers and have been used in many industrial ap- plications. However, their usability is hindered by the large number of evaluations of the objective functions they require. These can be expensive when solving practical tasks. In order to reduce the num- ber of objective function evaluations, surrogate models can be used. These are a simple and fast approximations of the real objectives. In this work we present the results of research made between the years 2009 and 2013. We present a multi-objective evolutionary algo- rithm with aggregate surrogate model, its newer version, which also uses a surrogate model for the pre-selection of individuals. In the next part we discuss the problem of selection of a particular type of model. We show which characteristics of the various models are im- portant and desirable and provide a framework which combines sur- rogate modeling with meta-learning. Finally, in the last part, we ap- ply multi-objective optimization to the problem of hyper-parameters tuning. We show that additional objectives can make finding of good parameters for classifiers faster. 1
3

Crisis Impact Prediction: A Data-driven Approach

Paglamidis, Konstantinos January 2024 (has links)
The field of crisis management and humanitarian assistance has been one of the major fields of development for governmental and common best European practices in the last decades. The European Union as a major humanitarian stakeholder has taken great effort to strengthen the response in case of humanitarian disasters. This work addresses the feasibility and possible benefits of using machine learning in the prediction of the impact severity of a disaster as a model-driven data analysis in comparison to data-driven reference models for early response coordination and preparedness. In comparison to classical data analysis systems the feasibility of earthquake impact prediction based on machine learning models is evaluated and further debated.

Page generated in 0.3517 seconds