• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um texto de geometria hiperbólica / A text of hyperbolic geometry

Arcari, Inedio 14 April 2008 (has links)
Orientador: Edson Agustini / Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação / Made available in DSpace on 2018-08-11T06:10:14Z (GMT). No. of bitstreams: 1 Arcari_Inedio_M.pdf: 2739163 bytes, checksum: 0ea17bdba620035f3cb29f9033fab926 (MD5) Previous issue date: 2008 / Resumo: A presente dissertação é um texto introdutório de Geometria Hiperbólica com alguns resultados e comentários de Geometria Elíptica. Nossa intenção foi compilar um material que possa ser utilizado em cursos introdutórios de Geometria Hiperbólica tanto em nível de licenciatura quanto de bacharelado. Para tornar o texto mais acessível, notas históricas sobre a bela página do desenvolvimento das Geometrias Não Euclidianas foram introduzidas logo no primeiro capítulo. Procuramos ilustrar fartamente o texto com figuras dentre as quais várias que foram baseadas no Modelo Euclidiano do Disco de Poincaré para a Geometria Hiperbólica. Atualmente, o estudo de Geometria Hiperbólica tem sido bastante facilitado pelo uso de softwares de geometria dinâmica, como o Cabri-Géometre, GeoGebra e NonEuclid, sendo esses dois últimos softwares livres / Abstract: The present work is an introductory text of Hyperbolic Geometry with some results and comments of Elliptic eometry. Our aim in this work were to compile a material that can be used as introduction to Hyperbolic Geometry inundergraduated courses. In the first chapter we introduced historical notes about the beautiful development of the Non Euclid Geometries in order to turn the text more interesting and accesible. We illustrated the text with many figures which were done on the Euclidean Model of the Poincaré' s Disk for the Hyperbolic Geometry. In this way, the study of Hyperbolic Geometry has been softened by the use of softwares of dynamic geometry, like Cabri-Geométre and the freeware softwares GeoGebra and NonEuclid / Mestrado / Mestre em Matemática
2

Trigonometria Hiperbólica: uma abordagem elementar

Admilson Alves dos Santos 15 April 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A meta principal desta dissertação é apresentar uma construção da trigonometria hiperbólica e um estudo das funções trigonométricas hiperbólicas de forma que alunos de iniciacão científica e professores do Ensino Médio tenham melhor acesso à referida teoria. A construção da trigonometria hiperbólica será feita priorizando a aplicação de conceitos elementares da matemática. Será utilizado o ramo direito da hiperbóle x2-y2 = 1, fazendo uma comparação com a construção da trigonometria circular e tomando como ponto de partida um setor hiperbolico. Sera necessario calcular a area desse setor hiperbólico, o que poderia ser feito através de uma integral denida, porem outros recursos elementares serão adotados, atendendo ao objetivo principal deste trabalho. Apresentar-se-á também uma conexão entre a trigonometria hiperbólica e a trigonometria circular, que é extendida num momento posterior para funções trigonométricas circulares e trigonométricas hiperbolicas. As funções trigonométricas hiperbólicas e suas funções inversas serão estudadas analítica e graficamente. O estudo analítico seguirá de forma completamente elementar, porém o estudo gráfico será feito utilizando alguns elementos da teoria dos limites de funções Algumas aplicações da trigonometria hiperbólica serão mostradas. Para analizar, é apresentada a trigonometria hiperbólica no conjunto dos números complexos. / The main goal of this dissertation is to present a construction of hyperbolic trigonometry, and a study of hyperbolic trigonometric functions so that undergraduate students and high school teachers have better access to that theory. The construction of hyperbolic trigonometry will be prioritizing the application of elementary concepts of math. Will be used the right branch of the hyperbola x2 􀀀 y2 = 1, making a comparison with the construction of circular trigonometry and taking as starting point a hyperbolic trigonometry sector. Will need calculate the area of this hyperbolic sector, which could be done through of a denite integral, but other basic features will be adopted, answering to main objective of this work. Also present a connection between circular trigonometry and hyperbolic trigonometry, which is extended after for circular trigonometric functions and hyperbolic trigonometric functions. The hyperbolic trigonometric functions and their inverse functions will be studied analytically and graphically. The analytical study will follow so completely elementary, however the graphic study will be done using some elements of the theory of limits of functions. Some application of hyperbolic trigonometry are displayed. Finally, the hyperbolic trigonometry is presented in the set of complex numbers.
3

Shortest Length Geodesics on Closed Hyperbolic Surfaces

Sanki, Bidyut January 2014 (has links) (PDF)
Given a hyperbolic surface, the set of all closed geodesics whose length is minimal form a graph on the surface, in fact a so called fat graph, which we call the systolic graph. The central question that we study in this thesis is: which fat graphs are systolic graphs for some surface -we call such graphs admissible. This is motivated in part by the observation that we can naturally decompose the moduli space of hyperbolic surfaces based on the associated systolic graphs. A systolic graph has a metric on it, so that all cycles on the graph that correspond to geodesics are of the same length and all other cycles have length greater than these. This can be formulated as a simple condition in terms of equations and inequations for sums of lengths of edges. We call this combinatorial admissibility. Our first main result is that admissibility is equivalent to combinatorial admissibility. This is proved using properties of negative curvature, specifically that polygonal curves with long enough sides, in terms of a lower bound on the angles, are close to geodesics. Using the above result, it is easy to see that a subgraph of an admissible graph is admissible. Hence it suffices to characterize minimal non-admissible fat graphs. Another major result of this thesis is that there are infinitely many minimal non-admissible fat graphs (in contrast, for instance, to the classical result that there are only two minimal non-planar graphs).

Page generated in 0.0841 seconds