• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hardness of Constraint Satisfaction and Hypergraph Coloring : Constructions of Probabilistically Checkable Proofs with Perfect Completeness

Huang, Sangxia January 2015 (has links)
A Probabilistically Checkable Proof (PCP) of a mathematical statement is a proof written in a special manner that allows for efficient probabilistic verification. The celebrated PCP Theorem states that for every family of statements in NP, there is a probabilistic verification procedure that checks the validity of a PCP proof by reading only 3 bits from it. This landmark theorem, and the works leading up to it, laid the foundation for many subsequent works in computational complexity theory, the most prominent among them being the study of inapproximability of combinatorial optimization problems. This thesis focuses on a broad class of combinatorial optimization problems called Constraint Satisfaction Problems (CSPs). In an instance of a CSP problem of arity k, we are given a set of variables taking values from some finite domain, and a set of constraints each involving a subset of at most k variables. The goal is to find an assignment that simultaneously satisfies as many constraints as possible. An alternative formulation of the goal that is commonly used is Gap-CSP, where the goal is to decide whether a CSP instance is satisfiable or far from satisfiable, where the exact meaning of being far from satisfiable varies depending on the problems.We first study Boolean CSPs, where the domain of the variables is {0,1}. The main question we study is the hardness of distinguishing satisfiable Boolean CSP instances from those for which no assignment satisfies more than some epsilon fraction of the constraints. Intuitively, as the arity increases, the CSP gets more complex and thus the hardness parameter epsilon should decrease. We show that for Boolean CSPs of arity k, it is NP-hard to distinguish satisfiable instances from those that are at most 2^{~O(k^{1/3})}/2^k-satisfiable. We also study coloring of graphs and hypergraphs. Given a graph or a hypergraph, a coloring is an assignment of colors to vertices, such that all edges or hyperedges are non-monochromatic. The gap problem is to distinguish instances that are colorable with a small number of colors, from those that require a large number of colors. For graphs, we prove that there exists a constant K_0&gt;0, such that for any K &gt;= K_0, it is NP-hard to distinguish K-colorable graphs from those that require 2^{Omega(K^{1/3})} colors. For hypergraphs, we prove that it is quasi-NP-hard to distinguish 2-colorable 8-uniform hypergraphs of size N from those that require 2^{(log N)^{1/4-o(1)}} colors. In terms of techniques, all these results are based on constructions of PCPs with perfect completeness, that is, PCPs where the probabilistic proof verification procedure always accepts a correct proof. Not only is this a very natural property for proofs, but it can also be an essential requirement in many applications. It has always been particularly challenging to construct PCPs with perfect completeness for NP statements due to limitations in techniques. Our improved hardness results build on and extend many of the current approaches. Our Boolean CSP result and GraphColoring result were proved by adapting the Direct Sum of PCPs idea by Siu On Chan to the perfect completeness setting. Our proof for hypergraph coloring hardness improves and simplifies the recent work by Khot and Saket, in which they proposed the notion of superposition complexity of CSPs. / Ett probabilistiskt verifierbart bevis (eng: Probabilistically Checkable Proof, PCP) av en matematisk sats är ett bevis skrivet på ett speciellt sätt vilket möjliggör en effektiv probabilistisk verifiering. Den berömda PCP-satsen säger att för varje familj av påståenden i NP finns det en probabilistisk verifierare som kontrollerar om en PCP bevis är giltigt genom att läsa endast 3 bitar från det. Denna banbrytande sats, och arbetena som ledde fram till det, lade grunden för många senare arbeten inom komplexitetsteorin, framförallt inom studiet av approximerbarhet av kombinatoriska optimeringsproblem. I denna avhandling fokuserar vi på en bred klass av optimeringsproblem i form av villkorsuppfyllningsproblem (engelska ``Constraint Satisfaction Problems'' CSPs). En instans av ett CSP av aritet k ges av en mängd variabler som tar värden från någon ändlig domän, och ett antal villkor som vart och ett beror på en delmängd av högst k variabler. Målet är att hitta ett tilldelning av variablerna som samtidigt uppfyller så många som möjligt av villkoren. En alternativ formulering av målet som ofta används är Gap-CSP, där målet är att avgöra om en CSP-instans är satisfierbar eller långt ifrån satisfierbar, där den exakta innebörden av att vara ``långt ifrån satisfierbar'' varierar beroende på problemet.Först studerar vi booleska CSPer, där domänen är {0,1}. Den fråga vi studerar är svårigheten av att särskilja satisfierbara boolesk CSP-instanser från instanser där den bästa tilldelningen satisfierar högst en andel epsilon av villkoren. Intuitivt, när ariten ökar blir CSP mer komplexa och därmed bör svårighetsparametern epsilon avta med ökande aritet. Detta visar sig vara sant och ett första resultat är att för booleska CSP av aritet k är det NP-svårt att särskilja satisfierbara instanser från dem som är högst 2^{~O(k^{1/3})}/2^k-satisfierbara. Vidare studerar vi färgläggning av grafer och hypergrafer. Givet en graf eller en hypergraf, är en färgläggning en tilldelning av färger till noderna, så att ingen kant eller hyperkant är monokromatisk. Problemet vi analyserar är att särskilja instanser som är färgbara med ett litet antal färger från dem som behöver många färger. För grafer visar vi att det finns en konstant K_0&gt;0, så att för alla K &gt;= K_0 är det NP-svårt att särskilja grafer som är K-färgbara från dem som kräver minst 2^{Omega(K^{1/3})} färger. För hypergrafer visar vi att det är kvasi-NP-svårt att särskilja 2-färgbara 8-likformiga hypergrafer som har N noder från dem som kräv minst 2^{(log N)^{1/4-o(1)}} färger. Samtliga dessa resultat bygger på konstruktioner av PCPer med perfekt fullständighet. Det vill säga PCPer där verifieraren alltid accepterar ett korrekt bevis. Inte bara är detta en mycket naturlig egenskap för PCPer, men det kan också vara ett nödvändigt krav för vissa tillämpningar. Konstruktionen av PCPer med perfekt fullständighet för NP-påståenden ger tekniska komplikationer och kräver delvis utvecklande av nya metoder. Vårt booleska CSPer resultat och vårt Färgläggning resultat bevisas genom att anpassa ``Direktsumman-metoden'' introducerad av Siu On Chan till fallet med perfekt fullständighet. Vårt bevis för hypergraffärgningssvårighet förbättrar och förenklar ett färskt resultat av Khot och Saket, där de föreslog begreppet superpositionskomplexitet av CSP. / <p>QC 20150916</p>
2

Consistency of Spectral Algorithms for Hypergraphs under Planted Partition Model

Ghoshdastidar, Debarghya January 2016 (has links) (PDF)
Hypergraph partitioning lies at the heart of a number of problems in machine learning as well as other engineering disciplines. While partitioning uniform hypergraphs is often required in computer vision problems that involve multi-way similarities, non-uniform hypergraph partitioning has applications in database systems, circuit design etc. As in the case of graphs, it is known that for given objective and balance constraints, the problem of optimally partitioning a hypergraph is NP-hard. Yet, over the last two decades, several efficient heuristics have been studied in the literature and their empirical success is widely appreciated. In contrast to the extensive studies related to graph partitioning, the theoretical guarantees of hypergraph partitioning approaches have not received much attention in the literature. The purpose of this thesis is to establish the statistical error bounds for certain spectral algorithms for partitioning uniform as well as non-uniform hypergraphs. The mathematical framework considered in this thesis is the following. Let V be a set of n vertices, and ψ : V ->{1,…,k} be a (hidden) partition of V into k classes. A random hypergraph (V,E) is generated according to a planted partition model, i.e., subsets of V are independently added to the edge set E with probabilities depending on the class memberships of the participating vertices. Let ψ' be the partition of V obtained from a certain algorithm acting on a random realization of the hypergraph. We provide an upper bound on the number of disagreements between ψ and ψ'. To be precise, we show that under certain conditions, the asymptotic error is o(n) with probability (1-o(1)). In the existing literature, such error rates are only known in the case of graphs (Rohe et al., Ann. Statist., 2011; Lei \& Rinaldo, Ann. Statist., 2015), where the planted model coincides with the popular stochastic block model. Our results are based on matrix concentration inequalities and perturbation bounds, and the derived bounds can be used to comment on the consistency of spectral hypergraph partitioning algorithms. It is quite common in the literature to resort to a spectral approach when the quantity of interest is a matrix, for instance, the adjacency or Laplacian matrix for graph partitioning. This is certainly not true for hypergraph partitioning as the adjacency relations cannot be encoded into a symmetric matrix as in the case of graphs. However, if one restricts the problem to m-uniform hypergraphs for some m ≥ 2, then a symmetric tensor of order m can be used to express the multi-way interactions or adjacencies. Thus, the use of tensor spectral algorithms, based on the spectral theory of symmetric tensors, is a natural choice in this scenario. We observe that a wide variety of uniform hypergraph partitioning methods studied in the literature can be related to any one of two principle approaches: (1) solving a tensor trace maximization problem, or (2) use of the higher order singular value decomposition of tensors. We derive statistical error bounds to show that both these approaches lead to consistent partitioning algorithms. Our results also hold when the hypergraph under consideration allows weighted edges, a situation that is commonly encountered in computer vision applications such as motion segmentation, image registration etc. In spite of the theoretical guarantees, a tensor spectral approach is not preferable in this setting due to the time and space complexity of computing the weighted adjacency tensor. Keeping this practical scenario in mind, we prove that consistency can still be achieved by incorporating certain tensor sampling strategies. In particular, we show that if the edges are sampled according to certain distribution, then consistent partitioning can be achieved with only few sampled edges. Experiments on benchmark problems demonstrate that such sampled tensor spectral algorithms are indeed useful in practice. While vision tasks mostly involve uniform hypergraphs, in database and electronics applications, one often finds non-uniform hypergraphs with edges of varying sizes. These hypergraphs cannot be expressed in terms of adjacency matrices or tensors, and hence, use of a spectral approach is tricky in this context. The partitioning problem gets more challenging due to the fact that, in practice, these hypergraphs are quite sparse, and hence, provide less information about the partition. We consider spectral algorithms for partitioning clique and star expansions of hypergraphs, and study their consistency under a sparse planted partition model. The results of hypergraph partitioning can be further extended to address the well-known hypergraph vertex coloring problem, where the objective is to color the vertices such that no edge is monochromatic. The hardness of this problem is well established. In fact, even when a hypergraph is bipartite or 2-colorable, it is NP-hard to find a proper 2-coloring for it. We propose a spectral coloring algorithm, and show that if the non-monochromatic subsets of vertices are independently added to the edge set with certain probabilities, then with probability (1-o(1)), our algorithm succeeds in coloring bipartite hypergraphs with only two colors. To the best our knowledge, these are the first known results related to consistency of partitioning general hypergraphs.

Page generated in 0.089 seconds