• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • Tagged with
  • 13
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Digging deeper into clustering and covering problems

Bandyapadhyay, Sayan 01 May 2019 (has links)
Clustering problems often arise in the fields like data mining, machine learning and computational biology to group a collection of objects into similar groups with respect to a similarity measure. For example, clustering can be used to group genes with related expression patterns. Covering problems are another important class of problems, where the task is to select a subset of objects from a larger set, such that the objects in the subset "cover" (or contain) a given set of elements. Covering problems have found applications in various fields including wireless and sensor networks, VLSI, and image processing. For example, covering can be used to find placement locations of the minimum number of mobile towers to serve all the customers of a region. In this dissertation, we consider an interesting collection of geometric clustering and covering problems, which are modeled as optimization problems. These problems are known to be $\mathsf{NP}$-hard, i.e. no efficient algorithms are expected to be found for these problems that return optimal solutions. Thus, we focus our effort in designing efficient approximation algorithms for these problems that yield near-optimal solutions. In this work, we study three clustering problems: $k$-means, $k$-clustering and Non-Uniform-$k$-center and one covering problem: Metric Capacitated Covering. $k$-means is one of the most studied clustering problems and probably the most frequently used clustering problem in practical applications. In this problem, we are given a set of points in an Euclidean space and we want to choose $k$ center points from the same Euclidean space. Each input point is assigned to its nearest chosen center, and points assigned to a center form a cluster. The cost per input point is the square of its distance from its nearest center. The total cost is the sum of the costs of the points. The goal is to choose $k$ center points so that the total cost is minimized. We give a local search based algorithm for this problem that always returns a solution of cost within $(1+\eps)$-factor of the optimal cost for any $\eps > 0$. However, our algorithm uses $(1+\eps)k$ center points. The best known approximation before our work was about 9 that uses exactly $k$ centers. The result appears in Chapter \ref{sec:kmeanschap}. $k$-clustering is another popular clustering problem studied mainly by the theory community. In this problem, each cluster is represented by a ball in the input metric space. We would like to choose $k$ balls whose union contains all the input points. The cost of each ball is its radius to the power $\alpha$ for some given paramater $\alpha \ge 1$. The total cost is the sum of the costs of the chosen $k$ balls. The goal is to find $k$ balls such that the total cost is minimized. We give a probabilistic metric partitioning based algorithm for this problem that always returns a solution of cost within $(1+\eps)$-factor of the optimal cost for any $\eps > 0$. However, our algorithm uses $(1+\eps)k$ balls, and the running time is quasi-polynomial. The best known approximation in polynomial time is $c^{\alpha}$ that uses exactly $k$ balls, where $c$ is a constant. The result appears in Chapter \ref{sec:kcluster}. Non-Uniform-$k$-center is another clustering problem, which was posed very recently. Like in $k$-clustering here also each cluster is represented by a ball. Additionally, we are given $k$ integers $r_1,\ldots,r_k$, and we want to find the minimum dilation $\alpha$ and choose $k$ balls with radius $\alpha\cdot r_i$ for $1\le i\le k$ whose union contains all the input points. This problem is known to be notoriously hard. No approximation is known even in the special case when $r_i$'s belong to a set of three integers. We give an LP rounding based algorithm for this special case that always returns a solution of cost within a constant factor of the optimal cost. However, our algorithm uses $(2+\eps)k$ balls for some constant $\epsilon$. We also show that this special case can be solved in polynomial time under a practical assumption. Moreover, we prove that the Euclidean version of the problem is also as hard as the general version. These results appear in Chapter \ref{sec:nukc}. Capacitated Covering is a generalization of the classical set cover problem. In the Metric Capacitated Covering problem, we are given a set of balls and a set of points in a metric space. Additionally, we are given an integer that is referred to as the capacity. The goal is to find a minimum subset of the input set of balls, such that each point can be assigned to the chosen balls in a manner so that the number of points assigned to each ball is bounded by the capacity. We give an LP rounding based algorithm for this problem that always returns a solution of cost within a constant factor of the optimal cost. However, we assume that we are allowed to expand the balls by a fairly small constant. If no expansion is allowed, then the problem is known to not admit any constant approximation. We discuss our findings in Chapter \ref{sec:capa}. As mentioned above, for many of the problems we consider, we obtain results that improve the best known approximation bounds. Our findings make significant progress towards better understanding the internals of these problems, which have impact across the disciplines. Also, during the course of our work, we have designed tools and techniques, which might be of independent interest for solving similar optimization problems. Finally, in Chapter \ref{sec:conclude}, we conclude our discussion and pose some open questions, which we consider as our potential future work.
2

Inapproximability of the Minimum Biclique Edge Partition Problem

HIRATA, Tomio, OTSUKI, Hideaki 01 February 2010 (has links)
No description available.
3

Improved inapproximability of Max-Cut through Min-Cut / Förbättrad ickeapproximerbarhet för Max-Cut genom Min-Cut

Wiman, Mårten January 2018 (has links)
A cut is a partition of a graph's nodes into two sets, and we say that an edge crosses the cut if it connects two nodes belonging to different sets. A maximum cut is a cut that maximises the number of crossing edges. We show that for any sufficiently small ε > 0 it is NP-hard to distinguish between graphs for which at least a fraction 1 - ε of all edges crosses the maximum cut and graphs for which at most a fraction 1 - 1.4568 ε of all edges crosses the maximum cut. The previous state of the art had a constant smaller than 1.375 in place of 1.4568. / Ett snitt är en partition av en grafs noder i två mängder, och vi säger att en kant korsar snittet om dess ändpunkter tillhör olika mängder. Ett maximalt snitt är ett snitt som maximerar antalet kanter som korsar snittet. Vi bevisar att det för alla tillräckligt små konstanter ε > 0 är NP-svårt att skilja mellan grafer för vilka minst en andel 1 - ε av alla kanter korsar det maximala snittet och grafer för vilka högst en andel 1 - 1.4568 ε av alla kanter korsar det maximala snittet. Detta är en förbättring jämfört med ett tidigare resultat som hade en konstant mindre än 1.375 istället för 1.4568.
4

Hardness of Constraint Satisfaction and Hypergraph Coloring : Constructions of Probabilistically Checkable Proofs with Perfect Completeness

Huang, Sangxia January 2015 (has links)
A Probabilistically Checkable Proof (PCP) of a mathematical statement is a proof written in a special manner that allows for efficient probabilistic verification. The celebrated PCP Theorem states that for every family of statements in NP, there is a probabilistic verification procedure that checks the validity of a PCP proof by reading only 3 bits from it. This landmark theorem, and the works leading up to it, laid the foundation for many subsequent works in computational complexity theory, the most prominent among them being the study of inapproximability of combinatorial optimization problems. This thesis focuses on a broad class of combinatorial optimization problems called Constraint Satisfaction Problems (CSPs). In an instance of a CSP problem of arity k, we are given a set of variables taking values from some finite domain, and a set of constraints each involving a subset of at most k variables. The goal is to find an assignment that simultaneously satisfies as many constraints as possible. An alternative formulation of the goal that is commonly used is Gap-CSP, where the goal is to decide whether a CSP instance is satisfiable or far from satisfiable, where the exact meaning of being far from satisfiable varies depending on the problems.We first study Boolean CSPs, where the domain of the variables is {0,1}. The main question we study is the hardness of distinguishing satisfiable Boolean CSP instances from those for which no assignment satisfies more than some epsilon fraction of the constraints. Intuitively, as the arity increases, the CSP gets more complex and thus the hardness parameter epsilon should decrease. We show that for Boolean CSPs of arity k, it is NP-hard to distinguish satisfiable instances from those that are at most 2^{~O(k^{1/3})}/2^k-satisfiable. We also study coloring of graphs and hypergraphs. Given a graph or a hypergraph, a coloring is an assignment of colors to vertices, such that all edges or hyperedges are non-monochromatic. The gap problem is to distinguish instances that are colorable with a small number of colors, from those that require a large number of colors. For graphs, we prove that there exists a constant K_0&gt;0, such that for any K &gt;= K_0, it is NP-hard to distinguish K-colorable graphs from those that require 2^{Omega(K^{1/3})} colors. For hypergraphs, we prove that it is quasi-NP-hard to distinguish 2-colorable 8-uniform hypergraphs of size N from those that require 2^{(log N)^{1/4-o(1)}} colors. In terms of techniques, all these results are based on constructions of PCPs with perfect completeness, that is, PCPs where the probabilistic proof verification procedure always accepts a correct proof. Not only is this a very natural property for proofs, but it can also be an essential requirement in many applications. It has always been particularly challenging to construct PCPs with perfect completeness for NP statements due to limitations in techniques. Our improved hardness results build on and extend many of the current approaches. Our Boolean CSP result and GraphColoring result were proved by adapting the Direct Sum of PCPs idea by Siu On Chan to the perfect completeness setting. Our proof for hypergraph coloring hardness improves and simplifies the recent work by Khot and Saket, in which they proposed the notion of superposition complexity of CSPs. / Ett probabilistiskt verifierbart bevis (eng: Probabilistically Checkable Proof, PCP) av en matematisk sats är ett bevis skrivet på ett speciellt sätt vilket möjliggör en effektiv probabilistisk verifiering. Den berömda PCP-satsen säger att för varje familj av påståenden i NP finns det en probabilistisk verifierare som kontrollerar om en PCP bevis är giltigt genom att läsa endast 3 bitar från det. Denna banbrytande sats, och arbetena som ledde fram till det, lade grunden för många senare arbeten inom komplexitetsteorin, framförallt inom studiet av approximerbarhet av kombinatoriska optimeringsproblem. I denna avhandling fokuserar vi på en bred klass av optimeringsproblem i form av villkorsuppfyllningsproblem (engelska ``Constraint Satisfaction Problems'' CSPs). En instans av ett CSP av aritet k ges av en mängd variabler som tar värden från någon ändlig domän, och ett antal villkor som vart och ett beror på en delmängd av högst k variabler. Målet är att hitta ett tilldelning av variablerna som samtidigt uppfyller så många som möjligt av villkoren. En alternativ formulering av målet som ofta används är Gap-CSP, där målet är att avgöra om en CSP-instans är satisfierbar eller långt ifrån satisfierbar, där den exakta innebörden av att vara ``långt ifrån satisfierbar'' varierar beroende på problemet.Först studerar vi booleska CSPer, där domänen är {0,1}. Den fråga vi studerar är svårigheten av att särskilja satisfierbara boolesk CSP-instanser från instanser där den bästa tilldelningen satisfierar högst en andel epsilon av villkoren. Intuitivt, när ariten ökar blir CSP mer komplexa och därmed bör svårighetsparametern epsilon avta med ökande aritet. Detta visar sig vara sant och ett första resultat är att för booleska CSP av aritet k är det NP-svårt att särskilja satisfierbara instanser från dem som är högst 2^{~O(k^{1/3})}/2^k-satisfierbara. Vidare studerar vi färgläggning av grafer och hypergrafer. Givet en graf eller en hypergraf, är en färgläggning en tilldelning av färger till noderna, så att ingen kant eller hyperkant är monokromatisk. Problemet vi analyserar är att särskilja instanser som är färgbara med ett litet antal färger från dem som behöver många färger. För grafer visar vi att det finns en konstant K_0&gt;0, så att för alla K &gt;= K_0 är det NP-svårt att särskilja grafer som är K-färgbara från dem som kräver minst 2^{Omega(K^{1/3})} färger. För hypergrafer visar vi att det är kvasi-NP-svårt att särskilja 2-färgbara 8-likformiga hypergrafer som har N noder från dem som kräv minst 2^{(log N)^{1/4-o(1)}} färger. Samtliga dessa resultat bygger på konstruktioner av PCPer med perfekt fullständighet. Det vill säga PCPer där verifieraren alltid accepterar ett korrekt bevis. Inte bara är detta en mycket naturlig egenskap för PCPer, men det kan också vara ett nödvändigt krav för vissa tillämpningar. Konstruktionen av PCPer med perfekt fullständighet för NP-påståenden ger tekniska komplikationer och kräver delvis utvecklande av nya metoder. Vårt booleska CSPer resultat och vårt Färgläggning resultat bevisas genom att anpassa ``Direktsumman-metoden'' introducerad av Siu On Chan till fallet med perfekt fullständighet. Vårt bevis för hypergraffärgningssvårighet förbättrar och förenklar ett färskt resultat av Khot och Saket, där de föreslog begreppet superpositionskomplexitet av CSP. / <p>QC 20150916</p>
5

Label Cover Reductions for Unconditional Approximation Hardness of Constraint Satisfaction / Ettikettäckningsreduktioner för Obetingad Approximationssvårighet av Vilkorsuppfyllning

Wenner, Cenny January 2014 (has links)
Combinatorial optimization include such tasks as finding the quickest route to work, scheduling jobs to specialists, and placing bus stops so as to minimize commuter times. We consider problems where one is given a collection of constraints with the objective of finding an assignment satisfying as many constraints as possible, also known as Constraint Satisfaction Problems (CSPs). Most CSPs are NP-hard to solve optimally and we turn to approximations - a solution is said to be a factor-c approximation if its satisfies at least c times the optimal number of constraints. This thesis presents new results on the approximation limits of CSPs in various settings. In ordering CSPs, one is given constraints which specify the relative order of items, and the objective is order the items so as to satisfy as many constraints as possible. We give improved approximation hardness results for two classical problems: it is NP-hard to approximate Maximum Acyclic Subgraph with a factor better than 14/15 and Maximum Betweenness with a factor better than 1/2. We present ordering problems which are NP-hard to approximate better than random assignments, and that there are ordering problems arbitrarily hard to approximate. Next, Gaussian elimination can efficiently find exact solutions for satisfiable collections of so-called parity constraints. We show that whenever constraints accept at least one assignment in addition to a parity, then the problem is NP-hard to approximate better than random assignments. Finally, we study the uselessness property which basically states that if one is given a collection where almost all constraints are simultaneously satisfiable and one is permitted to relax the constraints to accept or reject additional assignments, then it is still NP-hard to find solutions noticeably better than random assignments. We consider the setting where all variables appear unnegated and provide the first examples of non-trivially useless predicates assuming only P != NP. / Kombinatoriska optimering inkluderar naturliga uppgifter såsom att hitta den snabbaste vägen till sitt arbetet, att schemalägga jobb hos specialister, eller att placera hållplatser för att minimera resenärers restid.Vi begränsar vi oss till de problem i vilket man ges en samling vilkor på variablermed målet att hitta en tilldelning av variablerna uppfyllandes så många som möjligt av vilkoren;så kallade Vilkorsuppfyllningsproblem (eng: Constraint Satisfaction Problems, CSPs).De flesta CSPs är NP-svåra att lösa optimalt och vi beaktar istället approximationer. Specifikt kallas, för 0 &lt;= c &lt;= 1, en lösning för en faktor-c approximation om antalet vilkor uppfyllda av lösningen är minst cgånger det största antalet uppfyllda av någon läsning. Denna avhandling består av tre artiklar som presenterar nya resultat begränsande hurpass väl man kan approximera CSPs i diverse situationer.För paritetsvilkor är en samling konsistenta vilkor enkla att lösa genom Gausselimination. Vi visar att för samtliga vilkor som uppfylls av en paritet och åtminstonde en ytterliggare tilldelning så är det inte bara NP-svårt at lösa utan till och med att ge en icke-trivial approximation.Oanvändarbarhet är en stark svårighetsegenskap som i princip säger att det är NP-svårt att ge icke-triviala approximationer även när man gemensamt för alla vilkor får ändra vad som uppfyller dem eller inte. Vi ger de första exemplen på icke-trivialt oanvändbara vilkor utan negationer betingat endast på P != NP.Vi visar på approximerbarhet för diverse ordningsvilorsproblem. I dessa ges man vilkor på hur objekt ska vara ordnade relativt varandra och målet är att hitta en ordning som uppfyller så många av vilkoren som möjligt. Vi ger bättre svårighetsresultat för de två mest välkända ordningsproblem, visar att det finns problem där det är NP-svårt att approximera bättre än triviala strategier, och att det finns ordningsproblem där godtyckligt dåliga approximationsgarantier är NP-svåra. / <p>NADA är en delad institution mellan SU och KTH där senare nu kallar den CSC.</p> / ApproxNP
6

Recoloração convexa de grafos: algoritmos e poliedros / Convex recoloring of graphs: algorithms and polyhedra

Moura, Phablo Fernando Soares 07 August 2013 (has links)
Neste trabalho, estudamos o problema a recoloração convexa de grafos, denotado por RC. Dizemos que uma coloração dos vértices de um grafo G é convexa se, para cada cor tribuída d, os vértices de G com a cor d induzem um subgrafo conexo. No problema RC, é dado um grafo G e uma coloração de seus vértices, e o objetivo é recolorir o menor número possível de vértices de G tal que a coloração resultante seja convexa. A motivação para o estudo deste problema surgiu em contexto de árvores filogenéticas. Sabe-se que este problema é NP-difícil mesmo quando G é um caminho. Mostramos que o problema RC parametrizado pelo número de mudanças de cor é W[2]-difícil mesmo se a coloração inicial usa apenas duas cores. Além disso, provamos alguns resultados sobre a inaproximabilidade deste problema. Apresentamos uma formulação inteira para a versão com pesos do problema RC em grafos arbitrários, e então a especializamos para o caso de árvores. Estudamos a estrutura facial do politopo definido como a envoltória convexa dos pontos inteiros que satisfazem as restrições da formulação proposta, apresentamos várias classes de desigualdades que definem facetas e descrevemos os correspondentes algoritmos de separação. Implementamos um algoritmo branch-and-cut para o problema RC em árvores e mostramos os resultados computacionais obtidos com uma grande quantidade de instâncias que representam árvores filogenéticas reais. Os experimentos mostram que essa abordagem pode ser usada para resolver instâncias da ordem de 1500 vértices em 40 minutos, um desempenho muito superior ao alcançado por outros algoritmos propostos na literatura. / In this work we study the convex recoloring problem of graphs, denoted by CR. We say that a vertex coloring of a graph G is convex if, for each assigned color d, the vertices of G with color d induce a connected subgraph. In the CR problem, given a graph G and a coloring of its vertices, we want to find a recoloring that is convex and minimizes the number of recolored vertices. The motivation for investigating this problem has its roots in the study of phylogenetic trees. It is known that this problem is NP-hard even when G is a path. We show that the problem CR parameterized by the number of color changes is W[2]-hard even if the initial coloring uses only two colors. Moreover, we prove some inapproximation results for this problem. We also show an integer programming formulation for the weighted version of this problem on arbitrary graphs, and then specialize it for trees. We study the facial structure of the polytope defined as the convex hull of the integer points satisfying the restrictions of the proposed ILP formulation, present several classes of facet-defining inequalities and the corresponding separation algorithms. We also present a branch-and-cut algorithm that we have implemented for the special case of trees, and show the computational results obtained with a large number of instances. We considered instances which are real phylogenetic trees. The experiments show that this approach can be used to solve instances up to 1500 vertices in 40 minutes, comparing favorably to other approaches that have been proposed in the literature.
7

Monophonic convexity in classes of graphs / Convexidade MonofÃnica em Classes de Grafos

Eurinardo Rodrigues Costa 06 February 2015 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / In this work, we study some parameters of monophonic convexity in some classes of graphs and we present our results about this subject. We prove that decide if the $m$-interval number is at most 2 and decide if the $m$-percolation time is at most 1 are NP-complete problems even on bipartite graphs. We also prove that the $m$-convexity number is as hard to approximate as the maximum clique problem, which is, $O(n^{1-varepsilon})$-unapproachable in polynomial-time, unless P=NP, for each $varepsilon>0$. Finally, we obtain polynomial time algorithms to compute the $m$-convexity number on hereditary graph classes such that the computation of the clique number is polynomial-time solvable (e.g. perfect graphs and planar graphs). / Neste trabalho, estudamos alguns parÃmetros para a convexidade monofÃnica em algumas classes de grafos e apresentamos nossos resultados acerca do assunto. Provamos que decidir se o nÃmero de $m$-intervalo à no mÃximo 2 e decidir se o tempo de $m$-percolaÃÃo à no mÃximo 1 sÃo problemas NP-completos mesmo em grafos bipartidos. TambÃm provamos que o nÃmero de $m$-convexidade à tÃo difÃcil de aproximar quanto o problema da Clique MÃxima, que Ã, $O(n^{1-varepsilon})$-inaproximÃvel em tempo polinomial, a menos que P=NP, para cada $varepsilon>0$. Finalmente, apresentamos um algoritmo de tempo polinomial para determinar o nÃmero de $m$-convexidade em classes hereditÃrias de grafos onde a computaÃÃo do tamanho da clique mÃxima à em tempo polinomial (como grafos perfeitos e grafos planares).
8

Recoloração convexa de grafos: algoritmos e poliedros / Convex recoloring of graphs: algorithms and polyhedra

Phablo Fernando Soares Moura 07 August 2013 (has links)
Neste trabalho, estudamos o problema a recoloração convexa de grafos, denotado por RC. Dizemos que uma coloração dos vértices de um grafo G é convexa se, para cada cor tribuída d, os vértices de G com a cor d induzem um subgrafo conexo. No problema RC, é dado um grafo G e uma coloração de seus vértices, e o objetivo é recolorir o menor número possível de vértices de G tal que a coloração resultante seja convexa. A motivação para o estudo deste problema surgiu em contexto de árvores filogenéticas. Sabe-se que este problema é NP-difícil mesmo quando G é um caminho. Mostramos que o problema RC parametrizado pelo número de mudanças de cor é W[2]-difícil mesmo se a coloração inicial usa apenas duas cores. Além disso, provamos alguns resultados sobre a inaproximabilidade deste problema. Apresentamos uma formulação inteira para a versão com pesos do problema RC em grafos arbitrários, e então a especializamos para o caso de árvores. Estudamos a estrutura facial do politopo definido como a envoltória convexa dos pontos inteiros que satisfazem as restrições da formulação proposta, apresentamos várias classes de desigualdades que definem facetas e descrevemos os correspondentes algoritmos de separação. Implementamos um algoritmo branch-and-cut para o problema RC em árvores e mostramos os resultados computacionais obtidos com uma grande quantidade de instâncias que representam árvores filogenéticas reais. Os experimentos mostram que essa abordagem pode ser usada para resolver instâncias da ordem de 1500 vértices em 40 minutos, um desempenho muito superior ao alcançado por outros algoritmos propostos na literatura. / In this work we study the convex recoloring problem of graphs, denoted by CR. We say that a vertex coloring of a graph G is convex if, for each assigned color d, the vertices of G with color d induce a connected subgraph. In the CR problem, given a graph G and a coloring of its vertices, we want to find a recoloring that is convex and minimizes the number of recolored vertices. The motivation for investigating this problem has its roots in the study of phylogenetic trees. It is known that this problem is NP-hard even when G is a path. We show that the problem CR parameterized by the number of color changes is W[2]-hard even if the initial coloring uses only two colors. Moreover, we prove some inapproximation results for this problem. We also show an integer programming formulation for the weighted version of this problem on arbitrary graphs, and then specialize it for trees. We study the facial structure of the polytope defined as the convex hull of the integer points satisfying the restrictions of the proposed ILP formulation, present several classes of facet-defining inequalities and the corresponding separation algorithms. We also present a branch-and-cut algorithm that we have implemented for the special case of trees, and show the computational results obtained with a large number of instances. We considered instances which are real phylogenetic trees. The experiments show that this approach can be used to solve instances up to 1500 vertices in 40 minutes, comparing favorably to other approaches that have been proposed in the literature.
9

The k-hop connected dominating set problem: approximation algorithms and hardness results / O problema do conjunto dominante conexo com k-saltos: aproximação e complexidade

Coelho, Rafael Santos 13 June 2017 (has links)
Let G be a connected graph and k be a positive integer. A vertex subset D of G is a k-hop connected dominating set if the subgraph of G induced by D is connected, and for every vertex v in G, there is a vertex u in D such that the distance between v and u in G is at most k. We study the problem of finding a minimum k-hop connected dominating set of a graph (Mink-CDS). We prove that Mink-CDS is NP-hard on planar bipartite graphs of maximum degree 4. We also prove that Mink-CDS is APX-complete on bipartite graphs of maximum degree 4. We present inapproximability thresholds for Mink-CDS on bipar- tite and on (1, 2)-split graphs. Interestingly, one of these thresholds is a parameter of the input graph which is not a function of its number of vertices. We also discuss the complex- ity of computing this graph parameter. On the positive side, we show an approximation algorithm for Mink-CDS. When k = 1, we present two new approximation algorithms for the weighted version of the problem, one of them restricted to graphs with a poly- nomially bounded number of minimal separators. Finally, also for the weighted variant of the problem where k = 1, we discuss an integer linear programming formulation and conduct a polyhedral study of its associated polytope. / Seja G um grafo conexo e k um inteiro positivo. Um subconjunto D de vértices de G é um conjunto dominante conexo de k-saltos se o subgrafo de G induzido por D é conexo e se, para todo vértice v em G, existe um vértice u em D a uma distância não maior do que k de v. Estudamos neste trabalho o problema de se encontrar um conjunto dominante conexo de k-saltos com cardinalidade mínima (Mink-CDS). Provamos que Mink-CDS é NP-difícil em grafos planares bipartidos com grau máximo 4. Mostramos que Mink-CDS é APX-completo em grafos bipartidos com grau máximo 4. Apresentamos limiares de inaproximabilidade para Mink-CDS para grafos bipartidos e (1, 2)-split, sendo que um desses é expresso em função de um parâmetro independente da ordem do grafo. Também discutimos a complexidade computacional do problema de se computar tal parâmetro. No lado positivo, propomos um algoritmo de aproximação para Mink-CDS cuja razão de aproximação é melhor do que a que se conhecia para esse problema. Finalmente, quando k = 1, apresentamos dois novos algoritmos de aproximação para a versão do problema com pesos nos vértices, sendo que um deles restrito a classes de grafos com um número polinomial de separadores minimais. Além disso, discutimos uma formulação de programação linear inteira para essa versão do problema e provamos resultados poliédricos a respeito de algumas das desigualdades que constituem o politopo associado à formulação.
10

Graph colorings and digraph subdivisions / Colorações de grafos e subdivisões de digrafos

Moura, Phablo Fernando Soares 30 March 2017 (has links)
The vertex coloring problem is a classic problem in graph theory that asks for a partition of the vertex set into a minimum number of stable sets. This thesis presents our studies on three vertex (re)coloring problems on graphs and on a problem related to a long-standing conjecture on subdivision of digraphs. Firstly, we address the convex recoloring problem in which an arbitrarily colored graph G is given and one wishes to find a minimum weight recoloring such that each color class induces a connected subgraph of G. We show inapproximability results, introduce an integer linear programming (ILP) formulation that models the problem and present some computational experiments using a column generation approach. The k-fold coloring problem is a generalization of the classic vertex coloring problem and consists in covering the vertex set of a graph by a minimum number of stable sets in such a way that every vertex is covered by at least k (possibly identical) stable sets. We present an ILP formulation for this problem and show a detailed polyhedral study of the polytope associated with this formulation. The last coloring problem studied in this thesis is the proper orientation problem. It consists in orienting the edge set of a given graph so that adjacent vertices have different in-degrees and the maximum in-degree is minimized. Clearly, the in-degrees induce a partition of the vertex set into stable sets, that is, a coloring (in the conventional sense) of the vertices. Our contributions in this problem are on hardness and upper bounds for bipartite graphs. Finally, we study a problem related to a conjecture of Mader from the eighties on subdivision of digraphs. This conjecture states that, for every acyclic digraph H, there exists an integer f(H) such that every digraph with minimum out-degree at least f(H) contains a subdivision of H as a subdigraph. We show evidences for this conjecture by proving that it holds for some particular classes of acyclic digraphs. / O problema de coloração de grafos é um problema clássico em teoria dos grafos cujo objetivo é particionar o conjunto de vértices em um número mínimo de conjuntos estáveis. Nesta tese apresentamos nossas contribuições sobre três problemas de coloração de grafos e um problema relacionado a uma antiga conjectura sobre subdivisão de digrafos. Primeiramente, abordamos o problema de recoloração convexa no qual é dado um grafo arbitrariamente colorido G e deseja-se encontrar uma recoloração de peso mínimo tal que cada classe de cor induza um subgrafo conexo de G. Mostramos resultados sobre inaproximabilidade, introduzimos uma formulação linear inteira que modela esse problema, e apresentamos alguns resultados computacionais usando uma abordagem de geração de colunas. O problema de k-upla coloração é uma generalização do problema clássico de coloração de vértices e consiste em cobrir o conjunto de vértices de um grafo com uma quantidade mínima de conjuntos estáveis de tal forma que cada vértice seja coberto por pelo menos k conjuntos estáveis (possivelmente idênticos). Apresentamos uma formulação linear inteira para esse problema e fazemos um estudo detalhado do politopo associado a essa formulação. O último problema de coloração estudado nesta tese é o problema de orientação própria. Ele consiste em orientar o conjunto de arestas de um dado grafo de tal forma que vértices adjacentes possuam graus de entrada distintos e o maior grau de entrada seja minimizado. Claramente, os graus de entrada induzem uma partição do conjunto de vértices em conjuntos estáveis, ou seja, induzem uma coloração (no sentido convencional) dos vértices. Nossas contribuições nesse problema são em complexidade computacional e limitantes superiores para grafos bipartidos. Finalmente, estudamos um problema relacionado a uma conjectura de Mader, dos anos oitenta, sobre subdivisão de digrafos. Esta conjectura afirma que, para cada digrafo acíclico H, existe um inteiro f(H) tal que todo digrafo com grau mínimo de saída pelo menos f(H) contém uma subdivisão de H como subdigrafo. Damos evidências para essa conjectura mostrando que ela é válida para classes particulares de digrafos acíclicos.

Page generated in 0.0602 seconds