Spelling suggestions: "subject:"typha"" "subject:"hyper""
1 |
The role of NRG1 in the control of cellular morphogenesis in Candida albicansMurad, Abdul Munir Abdul January 2001 (has links)
This thesis describes the isolation and characterisation of the C. albicans NRG1 gene, which encodes a repressor of filamentous growth in this pathogenic fiingus. A C. albicans SBP1 cDNA was previously isolated in a screen for transacting factors that bind to a STRE-like element (consensus sequence: CCCCT) (Leng, 1999). In S. cerevisiae, STRE is a stress-responsive element that is required for the regulation of many stress-responsive genes (Marchler et al., 1993). In C. albicans, this element had been identified in the promoters of two hypha-specific genes, ALS8 and HYR1. Since many conditions that induce yeast-hypha morphogenesis in C. albicans impose a stress, it was proposed that the STRE- binding protein (Sbpl) might influence yeast-hypha morphogenesis and/or stress responses in this human pathogen. The cDNA was then used to isolate the complete C. albicans SBP1 locus by colony hybridisation. Both the cDNA and gene were sequenced, revealing an ORF capable of encoding a protein of 310 amino acids containing a C2H2-zinc finger motifs near its C-terminus. The zinc finger region of this protein displayed the highest sequence similarity to S. cerevisiae NRG1 (67 % identity), and hence the gene was renamed CaNRGl. To examine the role of CaNrgl, a C. albicans nrgl/nrgl null mutant and a mutant over-expressing the NRG1 gene were created. Overexpression of NRG1 did not reveal any obvious phenotypes, but inactivation of NRG1 caused constitutive filamentous and invasive growth, as well as increased sensitivity to some stresses. Also, the expression of the hypha-specific genes, ALS8, ECE1, HWP1 and HYR1, was derepressed in the nrgl/nrgl mutants. Similar phenotypes were observed for a C. albicans tupl/tupl null mutant. These observations suggest that Nrgl represses filamentous growth in C. albicans, possibly by recruiting Tupl to specific promoters. Unlike the tupl/tupl mutant, nrgl/nrgl cells formed normal hyphae following pH and serum stimulation, they generated chlamydospores at normal rates, and they grew at 42 C. Transcript profiling of 2002 C. albicans genes revealed that Nrgl regulates a subset of Tupl-repressed genes, which includes known hypha- specific genes and some virulence factors. The data also showed that Tupl regulates other genes, which are not regulated by Nrgl, including glucose sensitive genes, amino acid and sterol biosynthesis genes, and genes encoding other virulence determinants. Taken together, this study demonstrates that Nrgl is a transcriptional repressor that regulates a set of functions required for yeast-hypha morphogenesis and virulence in C. albicans.
|
2 |
MECHANICAL ABRASION AND ELECTROPORATION IN THE TRANSFORMATION OF INTACT PLEUROTUS OSTREATUS HYPHÆ and NUTRIENT-DEPENDANT RESISTANCE TO HYGROMYCIN BCordesman, Alexander 01 January 2008 (has links)
ABSTRACT 1: Abrasive treatment and subsequent electroporation of the basidiomycete Pleurotus ostreatus in a hypertonic buffer was investigated as a potential method of transforming of intact hyphæ. Mycelia, which are not capable of being transformed via electroporation due to interference by the cell wall, were abraded in an attempt to mechanically degrade the cell wall prior to electroporation. An electroporation field strength of 12,500 V/cm for 500 μs to 1.25 ms was found to be optimal based upon mortality effects. A 32 μm carborundum abrasive was initially evaluated but was quickly found to be inappropriately large so a corundum abrasive with an average size of 300 nm was focused on. Vortexing as well as low and medium power ultrasonic agitation with the corundum abrasive were investigated for their potential to cause mechanical degradation of the cell walls. Vortexing and low power sonication were found to be ineffective at causing adequate degradation while medium power sonication was found to be both ineffective and super lethal. While the possibility of mechanical abrasion facilitating transformation via electroporation remains, it is unlikely that conventional methods of agitation will be effective. ABSTRACT 2: The dose response of the basidiomycetes Pleurotus ostreatus, Agrocybe aegerita and Cordyceps millitaris to the antibiotic hygromycin B was tested on two common and one in-house solid growth media. The three species were grown on Potato dextrose agar, malt extract agar and an agar containing maltose, yeast-extract, peptone and glucose with concentrations of hygromycin B from zero to 100 μg/ml for 11 to 14 days. Micrometer measurements were used to determine the growth rate of each species on each media. Significant differences in hygromycin B tolerance for each species between the three media types were evident (p-value < .0001 by ANOVA for all). Neither the media type nor the growth rate on hygromycin B free plates were useful predictors of effective hygromycin B doses so optimization should be performed on every strain and media type used for selection.
|
3 |
Effect of fatty acids on hyphal growth in the pathogenic yeast Candida albicansShareck, Julie 09 1900 (has links)
Candida albicans est une levure pathogène qui, à l’état commensal, colonise les muqueuses de la cavité orale et du tractus gastro-intestinal. De nature opportuniste, C. albicans cause de nombreuses infections, allant des candidoses superficielles (muguet buccal, vulvo-vaginite) aux candidoses systémiques sévères. C. albicans a la capacité de se développer sous diverses morphologies, telles que les formes levures, pseudohyphes et hyphes. Des stimuli environnementaux mimant les conditions retrouvées chez l’hôte (température de 37°C, pH neutre, présence de sérum) induisent la transition levure-à-hyphe (i.e. morphogenèse ou filamentation). Cette transition morphologique contribue à la pathogénicité de C. albicans, du fait que des souches présentant un défaut de filamentation sont avirulentes. Non seulement la morphogenèse est un facteur de virulence, mais elle constituerait aussi une cible pour le développement d’antifongiques. En effet, il a déjà été démontré que l’inhibition de la transition levure-à-hyphe atténuait la virulence de C. albicans lors d’infections systémiques. Par ailleurs, des études ont démontré que de nombreuses molécules pouvaient moduler la morphogenèse. Parmi ces molécules, certains acides gras, dont l’acide linoléique conjugué (CLA), inhibent la formation d’hyphes. Ainsi, le CLA posséderait des propriétés thérapeutiques, du fait qu’il interfère avec un déterminant de pathogénicité de C. albicans. Par contre, avant d’évaluer son potentiel thérapeutique dans un contexte clinique, il est essentiel d’étudier son mode d’action.
Ce projet vise à caractériser l’activité anti-filamentation des acides gras et du CLA et à déterminer le mécanisme par lequel ces molécules inhibent la morphogenèse chez C. albicans. Des analyses transcriptomiques globales ont été effectuées afin d’obtenir le profil transcriptionnel de la réponse de C. albicans au CLA. L’acide gras a entraîné une baisse des niveaux d’expression de gènes encodant des protéines hyphes-spécifiques et des régulateurs de morphogenèse, dont RAS1. Ce gène code pour la GTPase Ras1p, une protéine membranaire de signalisation qui joue un rôle important dans la transition levure-à-hyphe. Des analyses de PCR quantitatif ont confirmé que le CLA inhibait l’induction de RAS1. De plus, le CLA a non seulement causé une baisse des niveaux cellulaires de Ras1p, mais a aussi entraîné sa délocalisation de la membrane plasmique. En affectant les niveaux et la localisation cellulaire de Ras1p, le CLA nuit à l’activation de la voie de signalisation Ras1p-dépendante, inhibant ainsi la morphogenèse. Il est possible que le CLA altère la structure de la membrane plasmique et affecte indirectement la localisation membranaire de Ras1p. Ces travaux ont permis de mettre en évidence le mode d’action du CLA. Le potentiel thérapeutique du CLA pourrait maintenant être évalué dans un contexte d’infection, permettant ainsi de vérifier qu’une telle approche constitue véritablement une stratégie pour le traitement des candidoses. / The yeast Candida albicans is an inhabitant of the oral cavity, the gastrointestinal and genitourinary tracts of humans. Generally encountered as a commensal, it is also an opportunistic pathogen that causes a spectrum of infections, ranging from superficial mycoses (thrush, vulvovaginitis) to severe and life-threatening systemic infections. A striking feature of C. albicans is its ability to grow in different morphological forms, including budding yeasts, pseudohyphae, and hyphae. Environmental cues that mimic host conditions (elevated temperature, neutral or alkaline pH, and serum) induce the yeast-to-hypha transition. Morphogenesis is considered to be an attribute of pathogenesis, as mutants locked as yeasts or filamentous forms are avirulent. Given that the yeast-to-hypha transition is a virulence factor, it may also constitute a target for the development of antifungal drugs. Indeed, evidence has shown that impairing morphogenesis is a means to treat systemic candidiasis. Concurrently, a number of molecules have been reported to modulate morphogenesis in C. albicans. For instance, several fatty acids, including conjugated linoleic acid (CLA), inhibited the yeast-to-hypha transition. By interfering with an important attribute of C. albicans pathogenesis, CLA may harbor antifungal properties. However, before assessing its therapeutic potential in a clinical context, it is mandatory to address CLA’s mode of action.
The present study aims to further characterize the hypha-inhibiting properties of fatty acids and CLA and to elucidate the mechanism by which these molecules inhibit the yeast-to-hypha transition in C. albicans. Gene expression analyses were performed to gain insight into the transcriptional response of cells to CLA on a genome-wide scale and to probe the fatty acid’s mode of action. CLA downregulated the expression of hypha-specific genes and blocked the induction of genes encoding regulators of hyphal growth, including that of RAS1, which encodes the small GTPase Ras1p. A membrane-associated signaling protein, Ras1p plays a major role in morphogenesis. Quantitative PCR analyses showed that CLA prevented the increase in RAS1 mRNA levels which occurred at the onset of the yeast-to-hypha transition. Unexpectedly, CLA reduced the steady-state levels of Ras1p. Additionally, CLA caused the delocalization of GFP-Ras1p from the plasma membrane. These findings indicate that CLA treatment results in suboptimal Ras1p cellular concentrations and localization, which impedes Ras1p signaling and inhibits the yeast-to-hypha transition. CLA may indirectly affect Ras1p localization by altering the structure of the plasma membrane. These studies have provided the mechanism underlying CLA’s hypha-inhibiting properties and may serve as the rationale to examine CLA’s therapeutic potential in the context of a Candida infection. There is a general lack of clinical evidence demonstrating that impairing morphogenesis is a sound approach to treat candidiasis. To remedy this situation, the therapeutic potential of molecules that modulate morphogenesis, such as CLA, should be clinically assessed.
|
4 |
Effect of fatty acids on hyphal growth in the pathogenic yeast Candida albicansShareck, Julie 09 1900 (has links)
Candida albicans est une levure pathogène qui, à l’état commensal, colonise les muqueuses de la cavité orale et du tractus gastro-intestinal. De nature opportuniste, C. albicans cause de nombreuses infections, allant des candidoses superficielles (muguet buccal, vulvo-vaginite) aux candidoses systémiques sévères. C. albicans a la capacité de se développer sous diverses morphologies, telles que les formes levures, pseudohyphes et hyphes. Des stimuli environnementaux mimant les conditions retrouvées chez l’hôte (température de 37°C, pH neutre, présence de sérum) induisent la transition levure-à-hyphe (i.e. morphogenèse ou filamentation). Cette transition morphologique contribue à la pathogénicité de C. albicans, du fait que des souches présentant un défaut de filamentation sont avirulentes. Non seulement la morphogenèse est un facteur de virulence, mais elle constituerait aussi une cible pour le développement d’antifongiques. En effet, il a déjà été démontré que l’inhibition de la transition levure-à-hyphe atténuait la virulence de C. albicans lors d’infections systémiques. Par ailleurs, des études ont démontré que de nombreuses molécules pouvaient moduler la morphogenèse. Parmi ces molécules, certains acides gras, dont l’acide linoléique conjugué (CLA), inhibent la formation d’hyphes. Ainsi, le CLA posséderait des propriétés thérapeutiques, du fait qu’il interfère avec un déterminant de pathogénicité de C. albicans. Par contre, avant d’évaluer son potentiel thérapeutique dans un contexte clinique, il est essentiel d’étudier son mode d’action.
Ce projet vise à caractériser l’activité anti-filamentation des acides gras et du CLA et à déterminer le mécanisme par lequel ces molécules inhibent la morphogenèse chez C. albicans. Des analyses transcriptomiques globales ont été effectuées afin d’obtenir le profil transcriptionnel de la réponse de C. albicans au CLA. L’acide gras a entraîné une baisse des niveaux d’expression de gènes encodant des protéines hyphes-spécifiques et des régulateurs de morphogenèse, dont RAS1. Ce gène code pour la GTPase Ras1p, une protéine membranaire de signalisation qui joue un rôle important dans la transition levure-à-hyphe. Des analyses de PCR quantitatif ont confirmé que le CLA inhibait l’induction de RAS1. De plus, le CLA a non seulement causé une baisse des niveaux cellulaires de Ras1p, mais a aussi entraîné sa délocalisation de la membrane plasmique. En affectant les niveaux et la localisation cellulaire de Ras1p, le CLA nuit à l’activation de la voie de signalisation Ras1p-dépendante, inhibant ainsi la morphogenèse. Il est possible que le CLA altère la structure de la membrane plasmique et affecte indirectement la localisation membranaire de Ras1p. Ces travaux ont permis de mettre en évidence le mode d’action du CLA. Le potentiel thérapeutique du CLA pourrait maintenant être évalué dans un contexte d’infection, permettant ainsi de vérifier qu’une telle approche constitue véritablement une stratégie pour le traitement des candidoses. / The yeast Candida albicans is an inhabitant of the oral cavity, the gastrointestinal and genitourinary tracts of humans. Generally encountered as a commensal, it is also an opportunistic pathogen that causes a spectrum of infections, ranging from superficial mycoses (thrush, vulvovaginitis) to severe and life-threatening systemic infections. A striking feature of C. albicans is its ability to grow in different morphological forms, including budding yeasts, pseudohyphae, and hyphae. Environmental cues that mimic host conditions (elevated temperature, neutral or alkaline pH, and serum) induce the yeast-to-hypha transition. Morphogenesis is considered to be an attribute of pathogenesis, as mutants locked as yeasts or filamentous forms are avirulent. Given that the yeast-to-hypha transition is a virulence factor, it may also constitute a target for the development of antifungal drugs. Indeed, evidence has shown that impairing morphogenesis is a means to treat systemic candidiasis. Concurrently, a number of molecules have been reported to modulate morphogenesis in C. albicans. For instance, several fatty acids, including conjugated linoleic acid (CLA), inhibited the yeast-to-hypha transition. By interfering with an important attribute of C. albicans pathogenesis, CLA may harbor antifungal properties. However, before assessing its therapeutic potential in a clinical context, it is mandatory to address CLA’s mode of action.
The present study aims to further characterize the hypha-inhibiting properties of fatty acids and CLA and to elucidate the mechanism by which these molecules inhibit the yeast-to-hypha transition in C. albicans. Gene expression analyses were performed to gain insight into the transcriptional response of cells to CLA on a genome-wide scale and to probe the fatty acid’s mode of action. CLA downregulated the expression of hypha-specific genes and blocked the induction of genes encoding regulators of hyphal growth, including that of RAS1, which encodes the small GTPase Ras1p. A membrane-associated signaling protein, Ras1p plays a major role in morphogenesis. Quantitative PCR analyses showed that CLA prevented the increase in RAS1 mRNA levels which occurred at the onset of the yeast-to-hypha transition. Unexpectedly, CLA reduced the steady-state levels of Ras1p. Additionally, CLA caused the delocalization of GFP-Ras1p from the plasma membrane. These findings indicate that CLA treatment results in suboptimal Ras1p cellular concentrations and localization, which impedes Ras1p signaling and inhibits the yeast-to-hypha transition. CLA may indirectly affect Ras1p localization by altering the structure of the plasma membrane. These studies have provided the mechanism underlying CLA’s hypha-inhibiting properties and may serve as the rationale to examine CLA’s therapeutic potential in the context of a Candida infection. There is a general lack of clinical evidence demonstrating that impairing morphogenesis is a sound approach to treat candidiasis. To remedy this situation, the therapeutic potential of molecules that modulate morphogenesis, such as CLA, should be clinically assessed.
|
Page generated in 0.0348 seconds