1 |
Hybrid Envelope Tracking Supply Modulator Analysis and Design for Wideband ApplicationsJanuary 2019 (has links)
abstract: A wideband hybrid envelope tracking modulator utilizing a hysteretic-controlled three-level switching converter and a slew-rate enhanced linear amplifierer is presented. In addition to smaller ripple and lower losses of three-level switching converters, employing the proposed hysteresis control loop results in a higher speed loop and wider bandwidth converter, enabling over 80MHz of switching frequency. A concurrent sensor circuit monitors and regulates the flying capacitor voltage VCF and eliminates conventional required calibration loop to control it. The hysteretic-controlled three-level switching converter provides a high percentage of power amplifier supply load current with lower ripple, reducing the linear amplifier high-frequency current and ripple cancellation current, improving the overall system efficiency. A slew-rate enhancement (SRE) circuit is employed in the linear amplifier resulting in slew-rate of
over 307V/us and bandwidth of over 275MHz for the linear amplifier. The slew-rate enhancement circuit provides a parallel auxiliary current path directly to the gate of the class-AB output stage transistors, speeding-up the charging or discharging of out-
put without modifying the operating point of the remaining linear amplifier, while maintaining the quiescent current of the class-AB stage. The supply modulator is fabricated in 65nm CMOS process. The measurement results show the tracking of LTE-40MHz envelope with 93% peak efficiency at 1W output power, while the SRE is disabled. Enabling the SRE it can track LTE-80MHz envelope with peak efficiency of 91%. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019
|
2 |
Time-Domain/Digital Frequency Synchronized Hysteresis Based Fully Integrated Voltage RegulatorJanuary 2019 (has links)
abstract: Power management integrated circuit (PMIC) design is a key module in almost all electronics around us such as Phones, Tablets, Computers, Laptop, Electric vehicles, etc. The on-chip loads such as microprocessors cores, memories, Analog/RF, etc. requires multiple supply voltage domains. Providing these supply voltages from off-chip voltage regulators will increase the overall system cost and limits the performance due to the board and package parasitics. Therefore, an on-chip fully integrated voltage regulator (FIVR) is required.
The dissertation presents a topology for a fully integrated power stage in a DC-DC buck converter achieving a high-power density and a time-domain hysteresis based highly integrated buck converter. A multi-phase time-domain comparator is proposed in this work for implementing the hysteresis control, thereby achieving a process scaling friendly highly digital design. A higher-order LC notch filter along with a flying capacitor which couples the input and output voltage ripple is implemented. The power stage operates at 500 MHz and can deliver a maximum power of 1.0 W and load current of 1.67 A, while occupying 1.21 mm2 active die area. Thus achieving a power density of 0.867 W/mm2 and current density of 1.377 A/mm2. The peak efficiency obtained is 71% at 780 mA of load current. The power stage with the additional off-chip LC is utilized to design a highly integrated current mode hysteretic buck converter operating at 180 MHz. It achieves 20 ns of settling and 2-5 ns of rise/fall time for reference tracking.
The second part of the dissertation discusses an integrated low voltage switched-capacitor based power sensor, to measure the output power of a DC-DC boost converter. This approach results in a lower complexity, area, power consumption, and a lower component count for the overall PV MPPT system. Designed in a 180 nm CMOS process, the circuit can operate with a supply voltage of 1.8 V. It achieves a power sense accuracy of 7.6%, occupies a die area of 0.0519 mm2, and consumes 0.748 mW of power. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019
|
3 |
Supervision d’une ferme éolienne pour son intégration dans la gestion d’un réseau électrique, Apports des convertisseurs multi niveaux au réglage des éoliennes à base de machine asynchrone à double alimentation / Management of a wind farm and integration in the operational power system, Contribution of multilevel power electronic converters for the control of doubly fed induction machine based wind generatorsGhennam, Tarak 29 September 2011 (has links)
La première thématique développée dans ce mémoire vise à développer de nouveaux algorithmes pour la commande des éoliennes reposant sur une machine asynchrone à double alimentation et des convertisseurs multi niveaux. Deux stratégies de contrôle direct du courant, basées sur l’Hystérésis à Zones Carrées et l’Hystérésis à Zones Circulaires (HZCi) ont été proposées. Celles-ci consistent à appliquer des vecteurs de tension appropriés pour contrôler les puissances actives et réactive générées et permettent également d’équilibrer les tensions du bus continu interne des convertisseurs. Des résultats de simulation et d’expérimentation montrent que la stratégie basée sur l’HZCi est meilleure en termes de forme d’onde et de contenu harmonique des tensions de sortie.La seconde concerne la supervision et la gestion des puissances active et réactive dans une ferme éolienne au vu de son intégration dans un réseau électrique. Cette supervision centralisée est assurée par un algorithme qui distribue les consignes de puissance aux éoliennes de la ferme de manière proportionnelle. Ces références sont fonction de la capacité maximale de production de l’éolienne. Pour cela, une analyse des transits de puissance dans le système éolien à base de la machine asynchrone à double alimentation a été effectuée. Elle a permis de déterminer la caractéristique (P, Q) du générateur et de calculer ses limites de compensation en termes de puissance réactive. Une gestion locale des puissances de chaque éolienne a été développée permettant ainsi une répartition des puissances entre le stator de la machine et le convertisseur coté réseau en considérant plusieurs modes de fonctionnement du système éolien / This research work deals with two topics conditioning the large scale development of wind turbines into electrical grids. The first is devoted to the development of new algorithms for the control of Doubly Fed Induction Machine (DFIM) based wind energy conversion systems. Two direct current control strategies have been proposed and are based on the hysteresis square areas (HZCA) and hysteresis circular areas (HZCI). Both strategies apply an appropriate voltage vector to control the active and reactive powers delivered to the grid, and also, to balance the voltages of the inner DC bus converter. Simulation and experimental results show that the HZCI strategy is better than HZCA in terms of output voltage waveforms and harmonic contain.The second topic is dedicated to the active and reactive powers supervision in a wind farm in order to supply prescribed power references from the grid operator. This supervision is ensured by a centralized algorithm that distributes power references between wind turbines in a proportional way. These references are calculated according to the maximum production capacity of wind turbines. An analysis of the power flow in the DFIM based wind energy system has been made to identify the (P, Q) characteristic and to calculate limits in terms of reactive power compensation. The local power management of each wind system has been developed allowing the powers distribution between the stator of the DFIM and the grid side converter by considering several operating modes of the wind generator
|
4 |
INTEGRATION OF CONTROL SYSTEMS INTO INTERLOCKING MATERIALSEthan West Guenther (13163403) 28 July 2022 (has links)
<p> </p>
<p>Architectured materials offer engineers more options for choosing materials with their desired properties. Segmenting materials to create topological interlocking materials (TIMs) creates materials, which can deform in greater amounts without failure and absorb more strain energy. Previous research on TIMs has shown that the stiffness and reaction force of these materials can be directly controlled by controlling the boundary forces offered by the frame which constrains these materials.</p>
<p>The research presented in this paper investigated a TIM made into a 1-Dimension beam like structure called a lintel. This research investigated not only the mechanics of this structure, but also developed a method of directly controlling the reaction force at a given displacement using shape memory alloy (SMA) wires. These wires would actuate the boundary pieces used to constrain the system. These actuation wires coupled with force sensors imbedded into the lintel allowed a feedback control loop to be established, which would control the reaction force. The reaction force was then controlled to create a smart structure which could optimize the strain energy absorption under the constraint of a maximum allowable load, similar to cellular solids used in packaging and padding materials.</p>
<p>To develop this smart structure, four separate investigations occurred. The first was finite element analysis (FEA) performed to model the loading response of the lintel. This experiment demonstrated that the Mises Truss Model was effective at modelling the lintel. The second was an experimental validation of the FEA model performed in the first investigation. This experiment validated the Mises Truss Model for the lintel. The third investigation simulated the active lintel using computational software and the model of the lintel established in the first two investigations. This experiment demonstrated computationally the ability of SMA wires to control the reaction force as desired in an idealized case. The fourth and final investigation experimentally validated the ability to create and active lintel and created a functioning prototype. This demonstrated experimentally the ability of the active lintel to control reaction force as desired.</p>
<p>This project has demonstrated the viability to create smart structures using segmented materials, which in the future may be used in a variety of applications including robotics and adaptive structures in harsh environments. </p>
|
Page generated in 0.0904 seconds