• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 6
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study on Amorphous Silicon Carbide Barrier Dielectric Materials

Chen, Chih-Hung 27 July 2002 (has links)
In the generation of deep submicron semiconductor fabrication¡Atransmission delay is primarily caused by the parasitic resistance and capacitance (RC) in the multilevel interconnects. Besides¡Aelectromigration is also a serious issue for the reliability of devices . There are two principle methods of reducing the RC delay. The first method is to replace the Al wires with Cu interconnects which supply lower resistivity and high resistance to electromigration. The second method is to use a lower dielectric constant material as the inter-metal dielectric. But in Copper metallization¡Athe key issue of this technology is the formation of a thin barrier layer for Cu on the surface of the SiC film to prevent the absorption of water and diffusion of Cu. In this study¡Awe employed films SiC base compounds to investigate their chemical bonds, I-V characteristics comparisons with Al and Cu gate. On the other hand, because of serious C-V hysteretic phenomena, we try to analyze and build up models. There five models is reasonable for our experiment: (1) mobile ions, (2) dielectric polarization, (3) carrier injection, (4) gate-electrons injection, and (5) bound charges. They happens in different materials and structures.
2

Advanced Control Schemes for Voltage Regulators

Lee, Kisun 28 April 2008 (has links)
The microprocessor faces a big challenge of heat dissipation. In order to enhance the performance of the microprocessor without increasing the heat dissipation, the leading microprocessor company, Intel, uses several methods to reduce the power consumption. Theses methods include enhanced sleep states control, the Speed Step technology, and multi-core architecture. These are closely related to the Voltage Regulator (VR), a dedicated power supply for the microprocessor and its control method. The speed of the VR control system should be high in order to meet the stringent load-line requirements with the high current and high di/dt, otherwise, a lot of decoupling capacitors are necessary. Capacitors make the VR cost and size higher. Therefore, the VR control method is very important. This dissertation discusses the way to increase the speed of VR without degrading other functions, such as the system efficiency, and the required control functions (AVP, current sharing and interleaving). The easiest way to increase the speed of the VR is to increase the switching frequency. However, higher switching frequency results in system efficiency degradation. This paper uses two approaches to deal with this issue. The first one is the architecture approach. The other is the fast transient control approach. For the architecture approach, a two-stage architecture is chosen. It is already shown that with a two-stage architecture, the switching frequency of the second stage can be increased, while keeping the same system efficiency. Therefore with the two-stage architecture, a high performance VR can be easily implemented. However, the light-load efficiency of two-stage architecture is not good because the bus voltage is designed for the full-load efficiency which is not optimized for the light load. The light-load efficiency is also important factor and it should be maximized because it is related to the battery life of mobile application or the energy utilization. Therefore, Adaptive Bus Voltage Positioning (ABVP) control has been proposed. By adaptively adjusting the bus voltage according to the load current, the system efficiency can be optimized for whole load range. The bus voltage rate of change is determined by the first stage bandwidth. In order to maintain regulation during a fast dynamic load, the first stage bandwidth should be high. However, it is observed from hardware when the first stage bandwidth is higher, the ABVP system can become unstable. To get a stable system, the first stage bandwidth is often designed to be slow which causes poor ABVP dynamic response. The large number of bus capacitors necessary for this also increases the size and cost. In this dissertation, in order to raise the first stage bandwidth, a stability analysis is performed. The instability loop (TABVP) is identified, and a small signal model to predict this loop is suggested. TABVP is related to the first stage bandwidth. With the higher first stage bandwidth, the peak magnitude of TABVP is larger. When the peak magnitude of TABVP touches 0dB, the system becomes unstable. Two solutions are proposed to reduce this TABVP magnitude without decreasing the first stage bandwidth. One method is to increase the feedforward gain and the other approach is to use a low pass filter. With these strategies, the ABVP system can be designed to be stable while pushing first stage bandwidth as high as possible. The ABVP-AVP system and its design are verified with hardware. For the fast transient control approach hysteretic control is chosen because of its fast transient and high light-load efficiency with DCM operation. However, in order to use the hysteretic control method for multiphase VR applications interleaving must be implemented. In this dissertation, a multiphase hysteretic control method is proposed which can achieve interleaving without losing its benefits. Using the phase locked loop (PLL), this control method locks the phase and frequency of the duty cycles to the reference clocks by modifying the size of the hysteretic band, to say, hysteretic band width. By phase shifting the reference clocks, interleaving can be achieved under steady state. During the load transient, the system loses the phase-locking function due to the slow hysteretic band width changing loop, and the system then reacts quickly to the load change without the interruption from the phase locking function (or the interleaving function). The proposed hysteretic control method consists of two loops, the fast hysteretic control loop and the slow hysteretic band width changing loop. These two nonlinear loops are difficult to model and analyze together. Therefore, assuming these two loops can be separated because of the speed difference, the phase plane model is used for the fast hysteretic control loop and the sampled data model is then used for the slow hysteretic band width changing loop. With these models, the proposed hysteretic control method can be analyzed and properly designed. However, if the transient occurs before the slow hysteretic band width changing loop settles down, the transient may start with the large hysteretic band width and the output voltage peak can exceed the specification. To prevent this, a hysteretic band width limiter is inserted. With the hardware, the proposed hysteretic control method and its design are verified. A two-phase VR with 300kHz switching frequency is built and the output capacitance required is only 860μF comparing to 1600μF output capacitance with the 50kHz bandwidth linear control method. That is about 46% capacitor reduction. The proposed hysteretic control method saturates the controller during the transient and the transient peak voltage is determined by the power stage parameters, the inductance and the output capacitors. By decreasing the inductance, the output capacitors are reduced. However, small inductance results in the low efficiency. In order to resolve this, the coupled inductor is used. With the coupled inductor, the transient inductance can be reduced with the same steady state inductance. Therefore, the transient speed can be faster without lowering down the system efficiency. The proposed hysteretic control method with the coupled inductor can be implemented using the DCR current sensing network. A two-phase VR with the proposed hysteretic control and the coupled inductor is built and the output capacitance is only 660μF comparing to 860μF output capacitance with the proposed hysteretic control only. A 23% capacitor reduction is achieved. And compared to the 50kHz bandwidth linear control method, a 60% capacitor reduction is achieved. / Ph. D.
3

Computational and Experimental Investigation of Seismic Structural Fuse Shapes for Structural Systems

Nguyen, Trai Ngoc 19 September 2022 (has links)
Structural fuses are ductile elements of a structure that are designed to yield and protect the surrounding members from damage, and then be replaceable after a major seismic event. A promising type of seismic structural fuse consists of a steel plate with engineered cutouts leaving a configuration of shear-acting links remaining. There have been several studies on various cutout patterns for shear-acting structural fuses including butterfly-shaped links, hourglass-shaped links, elliptical holes, and link shapes obtained from topology optimization. In most cases, the links are designed to undergo flexural yielding as it is believed to exhibit more ductility than other limit states. However, computational and experimental studies on the shear yielding limit state are limited. Additionally, the transition between shear dominated and flexural dominated limit states has not been previously investigated. Hence, a systematic and thorough study on the different limit states of these structural fuse shapes is necessary to provide better understanding on the structural behavior of each shape and accurately predict the controlling limit state during a seismic event. In addition, a previous study recognized that delaying shear buckling while promoting yielding is a way to improve the seismic performance of shear-acting structural fuses. However, the resulting new topologies were not experimentally validated. Furthermore, the computational study revealed that large localized plastic strain is one major challenge for these optimized configurations which might lead to potential for fracture. With the goals of filling the gaps in previous research, a computational and experimental program was conducted to (1) understand seismic performance of five structural fuse shapes, (2) develop a new ductile structural fuse shape with both buckling and fracture resistance, and (3) create design guidelines for practical design. This study consisted of the following parts (a) Creation of a new structural fuse shape called the Tied Butterfly Shape, (b) An experimental program with 20 specimens categorized into five groups including the shape created using topology optimization to resist buckling, the new shape called Tied Butterfly Shape, the butterfly shape, the hourglass shape and the elliptical holes, (c) Use of finite element models to better understand and interpret test data, (d) Two computational parametric studies conducted to investigate the effect of geometrical parameters on structural behavior of the optimized shape and Tied Butterfly Shape, (e) Development of design recommendations for each structural fuse shape. The computational and experimental results reported in this dissertation demonstrate that these structural fuse shapes are capable of improving the seismic performance of buildings. The presented design recommendations allow designers and researchers to continue exploring these structural fuse shapes. / Doctor of Philosophy / Structural fuses are ductile elements of a structure that are designed to yield and protect the surrounding members from damage, and then be replaceable after a major seismic event. Several studies on various cutout patterns for shear-acting structural fuses including butterfly-shaped links, hourglass-shaped links, elliptical holes, and link shapes obtained from topology optimization, reported that they offer several advantages for use in structural systems. Nevertheless, systematic studies on key limit states of these structural fuse shapes are limited. In addition, some analytical results have not been validated by experiments. The research work provides a comprehensive study on these structural fuse shapes. First, generalized design equations are derived using plastic mechanism analysis and key limit states of these structural fuse shapes are investigated. Second, an experimental program was conducted to further understand the cyclic behavior of these shapes associated with each limit state (i.e flexural yielding, shear yielding, lateral torsional buckling, transition between the flexural and shear yielding limit states). Then, nonlinear finite element modeling was implemented to validate against experimental results and provide better understanding of the behavior of the specimens which is not obvious during the test. Lastly, design recommendations are developed for each structural fuse shape.
4

Evaluation of the Performance of Bridge Steel Pedestals under Low Seismic Loads

Hite, Monique C. 09 April 2007 (has links)
Many bridges are damaged by collisions from over-height vehicles resulting in significant impact to the transportation network. To reduce the likelihood of impact from over-height vehicles, steel pedestals have been used as a cost-effective, efficient means to increase bridge clearance heights. However, these steel pedestals installed on more than 50 bridges in Georgia have been designed with no consideration of seismic loads and may behave in a similar fashion to high-type steel bearings. Past earthquakes have revealed the susceptibility of high-type bearings to damage, resulting in the collapse of several bridges. Although Georgia is located in a low-to-moderate region of seismicity, earthquake design loads for steel pedestals should not be ignored. In this study, the potential vulnerabilities of steel pedestals having limited strength and deformation capacity and lack of adequate connection details for anchor bolts is assessed experimentally and analytically. Full-scale reversed cyclic quasi-static experimental tests are conducted on a 40' bridge specimen rehabilitated with 19" and 33" steel pedestals to determine the modes of deformation and mechanisms that can lead to modes of failure. The inelastic force-deformation hysteretic behavior of the steel pedestals obtained from experimental test results is used to calibrate an analytical bridge model developed in OpenSees. The analytical bridge model is idealized based on a multi-span continuous bridge in Georgia that has been rehabilitated with steel pedestals. The analytical bridge model is subjected to a suite of ground motions to evaluate the performance of the steel pedestals and the overall bridge system. Recommendations are made to the Georgia Department of Transportation (GDOT) for the design and construction of steel pedestals. The results of this research are useful for Georgia and other states in low-to-moderate seismic zones considering the use of steel pedestals to elevate bridges and therefore reduce the likelihood of over-height vehicle collisions.
5

Measurements of Drag Torque and Lift Off Speed and Identification of Stiffness and Damping in a Metal Mesh Foil Bearing

Chirathadam, Thomas A. 2009 December 1900 (has links)
Metal mesh foil bearings (MMFBs) are a promising low cost gas bearing technology for support of high speed oil-free microturbomachinery. Elimination of complex oil lubrication and sealing system by installing MMFBs in oil free rotating machinery offer distinctive advantages such as reduced system overall weight, enhanced reliability at high rotational speeds and extreme temperatures, and extended maintenance intervals compared to conventional turbo machines. MMFBs for oil-free turbomachinery must demonstrate adequate load capacity, reliable rotordynamic performance, and low frictional losses in a high temperature environment. The thesis presents the measurements of MMFB break-away torque, rotor lift off and touchdown speeds, temperature at increasing static load conditions, and identified stiffness and equivalent viscous damping coefficients. The experiments, conducted in a test rig driven by an automotive turbocharger turbine, demonstrate the airborne operation (hydrodynamic gas film) of the floating test MMFB with little frictional loses at increasing loads. The measured drag torque peaks when the rotor starts and stops, and drops significantly once the bearing is airborne. The estimated rotor speed for lift-off increases linearly with increasing applied loads. During continuous operation, the MMFB temperature measured at one end of the back surface of the top foil increases both with rotor speed and static load. Nonetheless, the temperature rise is only nominal ensuring reliable bearing performance. Application of a sacrificial layer of solid lubricant on the top foil surface aids to reduce the rotor break-away torque. The measurements give confidence on this simple bearing technology for ready application into oil-free turbomachinery. Impact loads delivered (with a soft tip) to the test bearing, while resting on the (stationary) drive shaft, evidence a system with large damping and a structural stiffness that increases with frequency (max. 200 Hz). The system equivalent viscous damping ratio decreases from ~ 0.7 to 0.2 as the frequency increases. In general, the viscous damping in a metal mesh structure is of structural type and inversely proportional to the frequency and amplitude of bearing motion relative to the shaft. Impact load tests, conducted while the shaft rotates at 50 krpm, show that the bearing direct stiffness is lower (~25% at 200 Hz) than the bearing structural stiffness identified from impact load tests without shaft rotation. However, the identified equivalent viscous damping coefficients from tests with and without shaft rotation are nearly identical. The orbits of bearing motion relative to the rotating shaft show subsynchronous motion amplitudes and also backward synchronous whirl. The subsynchronous vibration amplitudes are locked at a frequency, nearly identical to a rotor natural frequency. A backward synchronous whirl occurs while the rotor speed is between any two natural frequencies, arising due to bearing stiffness asymmetry.
6

Experimental And Numerical Investigation Of Buckling Restrained Braces

Eryasar, Mehmet Emrah 01 February 2009 (has links) (PDF)
A typical buckling restrained brace (BRB) consists of a core segment and a buckling restraining mechanism. When compared to a conventional brace, BRBs provide nearly equal axial yield force in tension and compression. Buckling restraining mechanism can be grouped into two main categories. Buckling is inhibited either by using a concrete or mortar filled steel tube or by using steel sections only. While a large body of knowledge exists on buckling restrained braces the behavior of steel encased BRBs has not been studied in detail. Another area that needs further investigation is the detailing of the deboding material. For all types of BRBs a debonding material or a gap has to be utilized between the core brace and the restraining mechanism. The main function of the debonding material is to eliminate the transfer of shear force between the core brace and the restraining mechanism by preventing or reducing the friction. A two phase research study has been undertaken to address these research needs. In the first phase an experimental study was carried out to investigate the potential of using steel encased BRBs. In the second phase a numerical study was conducted to study the friction problem in BRBs. The experimental study revealed that steel encased braces provide stable hysteretic behavior and can be an alternative to mortar filled steel tubes. Material and geometric properties of the debonding layer for desired axial load behavior were identified and presented herein.
7

Digital Controlled Multi-phase Buck Converter with Accurate Voltage and Current Control

January 2017 (has links)
abstract: A 4-phase, quasi-current-mode hysteretic buck converter with digital frequency synchronization, online comparator offset-calibration and digital current sharing control is presented. The switching frequency of the hysteretic converter is digitally synchronized to the input clock reference with less than ±1.5% error in the switching frequency range of 3-9.5MHz. The online offset calibration cancels the input-referred offset of the hysteretic comparator and enables ±1.1% voltage regulation accuracy. Maximum current-sharing error of ±3.6% is achieved by a duty-cycle-calibrated delay line based PWM generator, without affecting the phase synchronization timing sequence. In light load conditions, individual converter phases can be disabled, and the final stage power converter output stage is segmented for high efficiency. The DC-DC converter achieves 93% peak efficiency for Vi = 2V and Vo = 1.6V. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
8

DESIGN OF HIGHER-ORDER ALL OPTICAL BINARY DELTA-SIGMA MODULATOR USING RING LASER

Ayed Alshammari, Marji 01 December 2018 (has links) (PDF)
The aim of this research is to investigate the performance of a bi-stable device using a single active element and to design a higher order all optical binary delta-sigma modulator (BΔΣM). A Delta sigma modulator has two important components that require enhancement to achieve robust modulation. The first component is the integrator which accumulates the error and at the same time leaks it. Here, the integrator is a single ring laser consisting of a semiconductor optical amplifier (SOA) and a filter to allow the light frequency of interest into the ring. The other component is the bi-stable device (called Schmitt trigger) that switches either ON (1) or OFF (0). There are different novel approaches to developing a bi-stable circuit. First, the coupled two ring lasers where each ring suppresses each other. Second, a novel idea that considered as a bi-stable device with single active element to achieve reduced power and reduce cost. This type of circuit is merged ring lasers with using single SOA. This system is modeled and its bistability hysteretic characteristics is investigated. The first bi-stable device is used to construct an all optical BΔΣM with 1st, 2nd and 3rd -order approaches. It performs better when the SOA bulk device is replaced by multi-quantum well (MQW) SOA.
9

Time-domain Response of Linear Hysteretic Systems to Deterministic and Random Excitations.

Muscolino, G., Palmeri, Alessandro, Ricciardelli, F. January 2005 (has links)
No / The causal and physically realizable Biot hysteretic model proves to be the simplest linear model able to describe the nearly rate-independent behaviour of engineering materials. In this paper, the performance of the Biot hysteretic model is analysed and compared with those of the ideal and causal hysteretic models. The Laguerre polynomial approximation (LPA) method, recently proposed for the time-domain analysis of linear viscoelastic systems, is then summarized and applied to the prediction of the dynamic response of linear hysteretic systems to deterministic and random excitations. The parameters of the LPA model generally need to be computed through numerical integrals; however, when this model is used to approximate the Biot hysteretic model, closed-form expressions can be found. Effective step-by-step procedures are also provided in the paper, which prove to be accurate also for high levels of damping. Finally, the method is applied to the dynamic analysis of a highway embankment excited by deterministic and random ground motions. The results show that in some cases the inaccuracy associated with the use of an equivalent viscous damping model is too large.
10

Experimental Study of Ring-Shaped Steel Plate Shear Walls

Egorova, Natalia Vadimovna 12 June 2013 (has links)
A new type of steel plate shear wall has been devised which resists out-of-plane buckling without requiring stiffeners. The ring-shaped steel plate shear wall (RS-SPSW) includes a web plate that is cut with a pattern of holes leaving ring-shaped portions of steel connected by diagonal links. The ring shape resists out-of-plane buckling through the mechanics of how a circular ring deforms into an ellipse. It has been shown that the ring's compression diagonal will shorten a similar amount as the tension diagonal elongates, essentially eliminating the slack in the direction perpendicular to the tension field. Because of the unique features of the ring's mode of distortion, the load-deformation response of the resulting RS-SPSW system can exhibit full hysteretic behavior and possess greatly improved stiffness relative to thin unstiffened SPSW. The concept has been validated through testing on seven 34 in x 34 in panels. General conclusions about influence of different geometric parameters on plate behavior have been made. / Master of Science

Page generated in 0.0783 seconds