• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 10
  • 9
  • 8
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 127
  • 40
  • 36
  • 33
  • 21
  • 17
  • 15
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis of heating systems to mitigate ice accretion on wind turbine blades

Suke, Peter 10 July 2014 (has links)
<p>Ice forming on wind turbine blades can cause loading imbalance and reduce power production of the turbine. Heating systems that prevent or remove ice on wind turbine blades are one of the more promising solutions to mitigate ice accretion. Methods to apply heat include direct application through electro-thermal resistance heaters mounted on the external surface of the blade or by indirect heating by forcing hot air through a channel along the leading edge of the blade. Heating systems for aircraft blades have become standardized and in some cases compulsory on aircraft to preserve human life; however, the technology is not directly transferable to the blades on wind turbines. The relative power of the anti-icing or de-icing system is critical to providing a cost benefit of having the system.</p> <p>This thesis investigates the heat transfer involved for electro-thermal and hot air heating strategies. An appropriate range of operating conditions and blade constructions are considered in order to characterize the effectiveness of both systems. A numerical model is developed to solve the one dimensional, differential heat transfer equations. The heater power required to prevent ice accumulation (anti-icing) on wind turbine blades is determined for electro-thermal heating. Anti-icing with hot air is shown to be unrealistic for a practical range of operating conditions.</p> <p>The low conductivity of the blade core creates a bottleneck for the de-icing system. It is shown that alternative core materials (Nomex/aluminum honeycomb) can reduce this effect. Electro-thermal and hot air de-icing each have their advantages and cannot be equally compared. In this thesis the suitability of each system has been analysed for a range of operating conditions and wind turbine constructions; the designer can then implement the most suitable strategy for their individual application.</p> / Master of Applied Science (MASc)
12

Modelling of icing for wind farms in cold climate : A comparison between measured and modelled data for reproducing and predicting ice accretion

Rindeskär, Erik January 2010 (has links)
Wind farms are nowadays more often constructed in alpine terrain than earlier due to theprofitable wind resource as well as, often, less conflicting interests than in more denselypopulated areas. The cold climate poses a relatively new challenge to the wind power industrysince icing of the wind turbine blades and sensors may induce losses in production, increasethe wear and tear of the components, leading to a shortening of structural life time as well as itdecreases the availability and hence reducing the economical profitability for the owner.This study focuses on modelling of ice accretion on a vertically mounted cylinder,dimensioned to correspond to an IceMonitor, and comparing the results with measured iceload on a similar instrument during the winter of 2009/2010. The modelling is carried outwith both a statistical approach using multiple linear regression and a physical approach usingmodel for ice accretion. Ice load was also modelled for the period 1989-2009 using the ERAinterimre-analysis data set in order to compare the winter 09/10 with a longer referenceseries. Modelled ice loads for four winters between 2005 and 2009 were compared withproduction data to investigate a possible connection between ice load and production losses.The results showed that the statistical approach was unable in its current form toreproduce and predict measured ice loads and the method was deemed unsuitable. Thephysical model shows more promising results, although with problems in modelling rapid iceaccretion and ice shedding events.No clear connection between measured production losses and modelled ice loads wasfound when analyzing available data. Uncertainties in input data correction as well asimportance of ice density are possible sources of error.Due to confidentiality of some of the data, the measurement sites used in this thesis aredenoted site A, site B and site C.
13

Computational Modeling of Droplet Impact Dynamics on Solid Substrates

Saravanan Manikkam, Pratulya Rajan 31 January 2023 (has links)
A computational model is developed to simulate the impact dynamics of a droplet on solid substrates with the purpose of predicting the droplet spreading characteristics over time. Previous studies focused on finding relations between the impact parameters and outcome dynamics. A modified approach like the one used in this project revolves around modeling the moving contact lines at the interface in a multiphase flow environment. Focusing on research from an aircraft de-icing point of view, this study is considered a prerequisite in understanding the physics of droplet impact. The primary focus is on extending the application to incorporate super-cooled environments. Development of the model involved the use of the Volume-of-Fluid function coupled with the High-Resolution Interface Capturing scheme to model the moving contact line. The evolution of the moving contact line is modeled with contact angles as their inputs to understand the effect of the surface tension forces. Contact angle modeling is based on the Blended-Kistler method, which captures the contact angle evolution based on the surface tension and capillary number. Preliminary validation performed on the model proves its effectiveness in accurately simulating the impact behavior when compared to the literature, where the spread diameter and height agree well with experiments. The validated model is also compared to the in-house experiments performed at the Cavitation and Multiphase flow laboratory using different substrate materials. The substrates each show unique behavior - Impact on Glass results in the droplet depositing on the surface. Aluminum results in a full rebound and PET-G, results in a drop ejection. Based on inputs from the experiments - contact angles, spread diameter, and the maximum spread $beta$, show good agreement in comparison to the literature. / Master of Science / Computational model developed to simulate the impact dynamics of the droplet on solid surfaces, which predicts the evolution of the droplet over time in order to analyze the effect of the surface and properties of the fluid on the behavior of the droplet on impact. Focusing on research from an aircraft de-icing point of view, this study is considered a pre-requisite in understanding the physics of droplet impact, with potential scope in extending the simulation to applications at temperatures lower than $0^{circ}$ C. A model developed with the help of basic governing equations in fluid mechanics helps capture the effect of interactions between different physical states. The angle at which the droplet interacts with the surface (Contact Angle) and the diameter evolution (d/D) help us understand the effectiveness of the model to simulate droplet impact. Preliminary validation of the model is performed with respect to the literature where the droplet diameter evolution and the height variation match well with the experiments, which was the major criterion in determining the accuracy of the model. This model is compared to the in-house experiments performed at the Cavitation and Multiphase flow laboratory on different surfaces such as Glass, Aluminum, and Plastic (PET-G). The surfaces each show unique behavior with impact on Glass having the droplet deposit on the surface, aluminum resulting in the droplet bouncing after hitting the surface, and PET-G resulting in a small droplet being ejected from the bigger droplet which eventually deposits on the surface. Conclusions from the comparison between the experiments and the numerical simulation show how the model is effective in capturing the impact behavior on surfaces like glass in comparison to surfaces like Aluminum in this case that repels water.
14

Theoretical prediction of rime ice accretion and snow loading on overhead transmission lines using free streamline theory

Larcombe, P. J. January 1984 (has links)
No description available.
15

Effects of Anti-Icing Agents on the Mechanical Properties of Concrete

Cremasco, Mark 10 1900 (has links)
Anti-icing agents are applied to road surfaces to prevent ice formation and to melt any hail or snow as it falls. The specific agent is selected to provide optimum anti-icing properties for the particular local climate in different municipalities taking into account cost, availability and properties. These anti-icing agents are generally applied in liquid form, and due to their low freezing temperatures, are able to remain liquid at the low ambient temperatures. Unfortunately, the negative aspect of the use of liquid agents is that they are able to penetrate concrete structures to a greater extent than can the solid de-icers, such as rock salt. Once the chloride solutions penetrate the concrete, they can have serious deleterious effects on both the reinforcing steel as well as the concrete [1]. It has been shown in previous studies that the cations of the solutions will tend to react with the cementitious materials to form precipitates of expansive nature. More specifically, the reaction of CaCl2 with Ca(OH)2 results in the formation of expansive calcium hydroxy-chloride [2]. The reaction of MgCl2 with Ca(OH)2 forms Mg(OH)2 in the capillary pores with CaCl2 as a by-product after which the MgCl2 can react with the calcium-silicate-hydrate to form magnesium-silicate-hydrate – a gel-like material with no inherent binding properties or strength. The calcium hydroxy-chloride and Mg(OH)2 precipitates can have a positive effect at early onset, but will eventually cause deterioration of concrete due to the internal forces applied by the precipitates as their volume increases. This can affect the strength and create notable interior strain in the concrete. There are a number of mechanical properties that can be analyzed using short-term testing that will help to determine any changes occurring due to salt solution exposure. To gain a general understanding of the effects of the salt solution exposure in this project, compressive strength, tensile strength, elastic modulus, and strain were measured using a number of exposure conditions. While the results of testing confirm that there are initial benefits beyond minimizing ice formation and bonding, there ultimately exist a number of concerns with respect to the reactions that occur between the salts and hardened cement paste. Although the formation of calcium hydroxy-chloride is known to be expansive [3], evidence of this compound was only seen indirectly through elevated strain and micro-cracking. There was no deterioration of compressive strength, tensile strength, or elastic modulus over the short-term testing. Similarly, and again due to the short testing period, the formation of magnesium-silicate-hydrate (M-S-H) is unlikely to have occurred, though its formation during long-term exposure can result in complete loss of binding strength [2]. However, the precipitation of Mg(OH)2 is believed to be responsible for the lower chloride diffusion rate as well as the increase in strength of the concrete exposed to MgCl2. The only agent which did not yield changes of concern with respect to concrete is the NaCl solution while CaCl2 produced the most deleterious effects.
16

Effects of Anti-Icing Agents on the Mechanical Properties of Concrete

Cremasco, Mark 10 1900 (has links)
Anti-icing agents are applied to road surfaces to prevent ice formation and to melt any hail or snow as it falls. The specific agent is selected to provide optimum anti-icing properties for the particular local climate in different municipalities taking into account cost, availability and properties. These anti-icing agents are generally applied in liquid form, and due to their low freezing temperatures, are able to remain liquid at the low ambient temperatures. Unfortunately, the negative aspect of the use of liquid agents is that they are able to penetrate concrete structures to a greater extent than can the solid de-icers, such as rock salt. Once the chloride solutions penetrate the concrete, they can have serious deleterious effects on both the reinforcing steel as well as the concrete [1]. It has been shown in previous studies that the cations of the solutions will tend to react with the cementitious materials to form precipitates of expansive nature. More specifically, the reaction of CaCl2 with Ca(OH)2 results in the formation of expansive calcium hydroxy-chloride [2]. The reaction of MgCl2 with Ca(OH)2 forms Mg(OH)2 in the capillary pores with CaCl2 as a by-product after which the MgCl2 can react with the calcium-silicate-hydrate to form magnesium-silicate-hydrate – a gel-like material with no inherent binding properties or strength. The calcium hydroxy-chloride and Mg(OH)2 precipitates can have a positive effect at early onset, but will eventually cause deterioration of concrete due to the internal forces applied by the precipitates as their volume increases. This can affect the strength and create notable interior strain in the concrete. There are a number of mechanical properties that can be analyzed using short-term testing that will help to determine any changes occurring due to salt solution exposure. To gain a general understanding of the effects of the salt solution exposure in this project, compressive strength, tensile strength, elastic modulus, and strain were measured using a number of exposure conditions. While the results of testing confirm that there are initial benefits beyond minimizing ice formation and bonding, there ultimately exist a number of concerns with respect to the reactions that occur between the salts and hardened cement paste. Although the formation of calcium hydroxy-chloride is known to be expansive [3], evidence of this compound was only seen indirectly through elevated strain and micro-cracking. There was no deterioration of compressive strength, tensile strength, or elastic modulus over the short-term testing. Similarly, and again due to the short testing period, the formation of magnesium-silicate-hydrate (M-S-H) is unlikely to have occurred, though its formation during long-term exposure can result in complete loss of binding strength [2]. However, the precipitation of Mg(OH)2 is believed to be responsible for the lower chloride diffusion rate as well as the increase in strength of the concrete exposed to MgCl2. The only agent which did not yield changes of concern with respect to concrete is the NaCl solution while CaCl2 produced the most deleterious effects.
17

Intergranular water and permeability of the Lake Vostok accretion ice, Eastern Antarctica

Jepsen, Steven Michael. January 2005 (has links) (PDF)
Thesis (Ph. D.)--Montana State University--Bozeman, 2005. / Typescript. Chairperson, Graduate Committee: Edward E. Adams. Includes bibliographical references (leaves 129-136).
18

Experimentální výzkum směsí proti tvorbě námrazy trolejových vedení / Experimental research of fluids against icing of overhead wires

Málek, Jan January 2020 (has links)
In this thesis, commercially available anti-icing fluids were tested. A methodology of assessment was designed for the effect of anti-icing fluids on the rapidity of ice growth and its development over time. These tests were conducted on a device constructed for the purpose of the thesis. The solutions were tested for their effect on the ice adhesion to a contact wire. The effect of the solutions on the tribological behaviour of the collector strip and contact wire was described. The experiments were supplemented by mensuration of the size of the contact angle of the solutions on the copper surface. However, these fluids anti-icing effect is relatively short-term. On the contrary, the thesis shows that even a small amount of anti-icing solution on the surface of the contact wire can help to significantly lower the ice adhesion.
19

Measuring routines of ice accretion for Wind Turbine applications : The correlation of production losses and detection of ice

Carlsson, Viktor January 2010 (has links)
Wind power will play a major role in the future energy system in Sweden. Most of the major wind parks are planned to be built in sites where the cold climate and atmospheric icing can cause serious problems. This underlines the importance of addressing these issues. The major cause of these problems is in-cloud icing of the rotor blades due to super cooled liquid droplets of clouds. The droplets freeze upon impact with the rotor blade and form hard rime ice. This rime ice causes disruption in the aerodynamics that leads to production losses, extra loads on the rotor blades and when the ice is shed it poses a safety risk to people in the near environment. This master thesis focuses on how to measure the accretion of ice and the correlation between measured ice and production losses of two wind parks in northern Sweden.   The results show a good correlation between the ice accretion on a stationary sensor and the production loss from a wind turbine. In most icing events the icing of the sensor and large production losses from the wind turbine correlated clearly. Attempts to quantify the production losses at a certain ice rate measured with the stationary sensors was done, however no clear results was produced. The reason for this is that the wind turbines often stop completely during an icing event and that the time series analyzed was too short to be able to quantify the losses at certain wind speed and ice rates.   Recommendations on the type of sensor which should be used was to be produced, however the conclusion was that no single sensor has acted satisfactory and could be recommended to measure ice accretion for wind turbine applications. Due to this, at least two sensors are recommended to increase the redundancy in the measurement system. Modeling ice accretion with standard parameters measured has been done and the results show that the time of icing could be determined quite well when the sensors was ice free, however when the sensors and especially the humidity sensors was iced the time of icing was overestimated.   The main conclusion drawn is that there is a clear relationship between the icing of a stationary sensor and the rotor blade. There is still no which fulfills all demands of measuring ice accretion for wind turbine applications, further it is possible with simple models to roughly determine when icing occurs with standard measurements.
20

Design and Analysis of a Novel Deformed Skin Adhesion for Aircraft Icing

Jimenez, Andrew Enrique 21 June 2021 (has links)
No description available.

Page generated in 0.1012 seconds