• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identidades polinomiais graduadas de matrizes triangulares. / Graded polynomial identities of triangular matrices.

BORGES, Alex Ramos. 06 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-06T14:53:31Z No. of bitstreams: 1 ALEX RAMOS BORGES - DISSERTAÇÃO PPGMAT 2012..pdf: 550720 bytes, checksum: cd1d40089c6d522f3d44501f683dc900 (MD5) / Made available in DSpace on 2018-08-06T14:53:31Z (GMT). No. of bitstreams: 1 ALEX RAMOS BORGES - DISSERTAÇÃO PPGMAT 2012..pdf: 550720 bytes, checksum: cd1d40089c6d522f3d44501f683dc900 (MD5) Previous issue date: 2012-12 / Neste trabalho serão estudadas as graduações e identidades polinomiais graduadas da álgebra Un(K) das matrizes triangulares superiores n×n sobre um corpo K, o qual será sempre in nito. Primeiramente, será estudado o caso n = 2, para o qual será mostrado que existe apenas uma graduação não trivial e serão descritos as identidades, as codimensões e os cocaracteres graduados. Para o caso n qualquer, serão estudadas as identidades e codimensões graduadas, considerando-se a Zn-graduação natural de Un(K). Finalmente, será apresentada uma classi cação das graduações de Un(K) por um grupo qualquer. / In this work we study the gradings and the graded polynomial identities of the upper n × n triangular matrices algebra Un(K) over a eld K, which is always in nity. The case n = 2 will be rstly studied, for which will be shown that there is only one nontrivial grading and we shall describe the graded identities, codimensions and cocharacters. For the general n case, we shall study graded identities and codimensions, considering the natural Zn-grading of Un(K). Finally, we will present a classi cation of the gradings of Un(K) by any group.

Page generated in 0.0877 seconds