• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 243
  • 42
  • 36
  • 30
  • 12
  • 6
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 603
  • 310
  • 166
  • 135
  • 135
  • 114
  • 98
  • 94
  • 85
  • 70
  • 56
  • 51
  • 50
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

The Simulation, Development, and Testing of a Staged Catalytic Microtube Ignition System

Deans, Matthew Charles 08 March 2013 (has links)
No description available.
212

Effects of Moisture on Combustion Characteristics of Live California Chaparral and Utah Foliage

Smith, Steven G. 17 May 2005 (has links) (PDF)
Current fire-spread models are based largely on empirical correlations based on fires burning through dead pine needles. There is a need to increase the accuracy of modeling wildfires in live vegetation. This project investigates the quantitative and qualitative ignition characteristics of eight live fuels, four from southern California (manzanita, scrub oak, ceanothus, and chamise) and four from Utah (canyon maple, gambel oak, big sagebrush, and Utah juniper). Individual leaves were observed as they were exposed to hot gases from a flat flame burner. The broadleaf species from both California and Utah had noticeable surface changes during the ignition process. All fresh samples showed a color change on the leaf surface from a light dusty color to a dark wet color. This is likely due to the melting of the waxy protective layer. Samples of scrub oak, manzanita, ceanothus, canyon maple, and gambel oak at moderate moisture contents (50 to 75%) exhibited bubbling under the leaf surface. Liquid droplets were observed on the surface of Manzanita samples at moisture contents near 75%, while bursting was observed on the surface at moisture contents near 100%. This bursting is due to evaporation of the moisture inside the leaf causing internal pressures to exceed the surface strength of the leaf. Ignition was defined as the time when the first visible gaseous flame was observed near the leaf surface. Measurements of the time to ignition and the temperature at ignition were performed for all broadleaf species. A large degree of scatter was observed in the quantitative ignition data, due largely to variations in leaf thickness and moisture content. Time to ignition was found to correlate with sample thickness and the mass of moisture in the sample. Ignition temperature was constant for varying moisture mass but appeared to increase with thickness. The burning time, defined as the duration of a visible flame near the leaf, was found to correlate roughly with leaf mass. Several types of correlations were made to describe ignition temperature and ignition time as a function of leaf thickness and mass of moisture.
213

Influence of Internal Geometry on Pre-chamber Combustion Concept in a Lean Burn Natural Gas Engine

Hlaing, Ponnya 23 August 2022 (has links)
The road transport sector, dominated by internal combustion engines, accounts for as high as 23% of annual carbon emissions and is considered the major area where urgent carbon reduction strategies are required. Natural gas is considered one of the intermediate fuels to reduce carbon emissions before net carbon neutral solutions can be achieved. Methane (CH4), a major constituent of natural gas, has the highest hydrogen-to-carbon ratio among the naturally occurring hydrocarbons, and the CO2 emission from natural gas combustion is around 25% less than diesel combustion. Lean combustion shows promises for improved engine efficiency, thereby reducing carbon emissions for a given required power output. However, igniting lean natural gas mixtures requires high ignition energy, beyond the capability of spark ig nition. The pre-chamber combustion (PCC) concept can provide the required ignition energy with relatively simple components. While most pre-chamber designs found in the literature are bulky and require extensive cylinder head modifications or complete engine redesign, the narrow-throat pre-chamber design can readily fit the diesel injector pockets of most heavy-duty engines without the need for substantial hardware modifications. The unique pre-chamber design is significantly different from the contemporary pre-chamber geometries, and its engine combustion phenomena and operating characteristics are largely unknown. This thesis work investigates the effect of important pre-chamber dimensions, such as the volume, nozzle hole diameter, and throat diameter, on the engine operating characteristics and emission trends. The experiments focus on the lean operation with excess air ratios (λ) exceeding 1.6, which can be achieved by auxiliary fuel injection into the pre-chamber. The air-fuel mixture formation process inside the pre-chamber is also investigated by employing 1-D and 3-D CFD simulations, where the engine experiments provided the boundary conditions. From the simulation results, a correlation between the injected and the trapped fuel in the pre-chamber is proposed by theoretical scavenging models to estimate the air-fuel ratio in the pre-chamber with high accuracy. Although the studies largely rely on thermodynamic engine experiments, the 1-D engine simulation implements the engine studies in estimating the mixture composition and heat transfer losses from the engine.
214

Ignition Propensity of Hydrogen/Air Mixtures in the Presence of Heated Platinum Surfaces

Brady, Kyle B. 07 October 2009 (has links)
No description available.
215

Plasma Assisted Combustion and Flameholding in High Speed Cavity Flows

Heinrichs, Joseph Aloysius 29 August 2012 (has links)
No description available.
216

Measurements of Spark Ignition Energy of n-Octane and i-Octane

Rimpf, Lisa M. January 2005 (has links)
No description available.
217

Simulation studies of the effects of lean operation, turbocharging and heat transfer on spark ignition engines

Watts, Paula A January 1979 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Paula A. Watts. / M.S.
218

Expérimental study of lean aeronautical ignition : impact of critical parameters on the mechanisms acting along the different ignition phases / Etude expérimentale de l’allumage pauvre aéronautique : impact des paramètres critiques sur les mécanismes présents dans chaque phase

Marrero Santiago, Javier 21 March 2018 (has links)
La certification des moteurs aéronautiques impose des fortes réductions des émissions polluantes. Une des solutions adoptées par les constructeurs est d'introduire la combustion pauvre dans les nouvelles chambres. Cette configuration pose des problèmes de stabilité de flamme et de ré-allumage en altitude. Le ré-allumage des moteurs doit être garanti et il y a une nécessité réelle de mieux comprendre les interactions complexes et multi-physiques guidant ce processus. Cette étude expérimentale vise les différentes phases de l'allumage aéronautique dans deux chambres swirlées, confinées diphasiques. Un foyer mono-injecteur permet d'analyser le développement du noyau de flamme dans ses premiers instants et de décrire comment les interactions avec l'écoulement local peuvent conduire à une réussite d'allumage ou à une ratée, via différents mécanismes. Une chambre multi-injecteur est dédiée à analyser la propagation de la flamme entre injecteurs pour différents espacements et carburants. / Jet engine certification undergoes more and more stringent controls that impose a strong reduction of pollutant emissions. As a response, designs move towards lean combustion, which raises difficulties relative to combustion stability and re-ignition capabilities in high altitude. The use of liquid fuels in real chambers introduces new variables into the ignition process, which involves complex simultaneous multi-physical interactions. The present experimental investigation addresses different phases of aeronautical ignition in two different confined, swirled, spray jet chambers. A single-injector facility is used to study the initial flame kernel development and interaction with the flow leading to successful ignition or misfire, following different mechanisms. A multi-injector facility enables the investigation of flame propagation between injectors, which is also governed by the local flow. Here, inter-injector distances are varied and fuels of different volatilities are tested.
219

Three-Dimensional Model of Solid Ignition and Ignition Limit by a Non-Uniformly Distributed Radiant Heat Source

Tseng, Ya-Ting 30 June 2011 (has links)
No description available.
220

Theoretical and experimental study on the autoignition phenomena of homogeneous reactive mixtures

López Pintor, Darío 07 November 2017 (has links)
The main objective of this Thesis is the study of the autoignition phenomenon of reactive mixtures from a theoretical and experimental point of view. A wide parametric study has been carried out in a Rapid Compression-Expansion Machine (RCEM) for different initial temperatures, compression ratios, equivalence ratios and molar fractions of oxygen (by using synthetic EGR) for different fuels. The ignition delay referred to cool flames (if it can be identified), as well as the ignition delay referred to the high-temperature stage of the ignition, have been experimentally obtained and their trends have been explained regarding the chemical kinetics of each fuel. The different effects of the species that compose the synthetic EGR on the ignition delay have been studied, decoupling the thermodynamic effects from the chemical ones. Different compositions have been taken into account to generate the synthetic EGR, and validation limits have been obtained for each mixture. The thermodynamic and the chemical effects have shown to be opposed, while the dominant one is different depending on the working temperature. Several chemical kinetic mechanisms have been validated by comparison to the experimental results. A detailed mechanism for iso-octane and n-heptane blends and a reduced mechanisms for n-dodecane have been analyzed. Moreover, a sub-model for the generation and decay of excited OH* has been validated by comparison to chemiluminescence and spectroscopy results. The different radiation sources have been studied for iso-octane and n-heptane by means of spectroscopy techniques. Besides, chemiluminescence measurements filtered at 310nm (OH* emission wavelength) have been performed in order to analyze the generalization and propagation velocity of the autoignition front. The ignition propagation has shown to depend on the thermodynamic conditions reached in the combustion chamber when the first ignition spot occurs and not on the global reactivity of the mixture. Furthermore, two different radiation sources have been found at 310nm in the spectroscopic analysis depending on the ignition intensity: the decay of the OH* radical from excited to ground state and the oxidation of CO to CO2 (CO continuum). However, these optical techniques have been applied only in the experiments carried out with iso-octane and n-heptane due to technical limitations. Finally, a new predictive model has been theoretically developed starting from the Glassman's model for autoignition. This method is based on modeling the accumulation rate of chain carriers up to reach their critical concentration (obtaining the ignition delay referred to cool flames) and, afterwards, modeling the disappearance rate of such chain carriers up to their consumption (when the maximum heat release rate is reached, obtaining the ignition delay referred to the high-temperature stage of the process). The predictive capability of the model has been compared to the ability of other methods that can be found in the literature, such as the Livengood & Wu integral method. The validity of each method has been tested, defining a working methodology to obtain reasonable predictions for the ignition delay. / El objetivo de esta Tesis Doctoral es el estudio del fenómeno de autoencendido de mezclas reactivas desde un punto de vista teórico y experimental. Se ha realizado un amplio estudio paramétrico en una Máquina de Compresión-Expansión Rápida (RCEM por sus siglas en inglés) barriendo diversas temperaturas iniciales, relaciones de compresión, dosados relativos y fracciones molares de oxígeno (mediante el uso de EGR sintético) para distintos combustibles. El tiempo de retraso del fenómeno de llamas frías (en el caso de existir), así como el tiempo de retraso de la etapa de alta temperatura, han sido obtenidos experimentalmente y sus tendencias explicadas mediante cinética química. Se han estudiado los diferentes efectos de las distintas especies involucradas en el EGR sintético sobre el tiempo de retraso, desligando aquellos de carácter termodinámico de los efectos puramente químicos. Se han tenido en cuenta distintas composiciones para definir dicho EGR, estableciendo límites de validez para cada una de las mezclas propuestas. Los efectos termodinámicos y químicos resultaron ser opuestos, siendo dominante uno u otro a distintos rangos de temperatura de trabajo. Varios mecanismos de cinética química han sido validados gracias a los resultados experimentales obtenidos. Además de un mecanismo detallado para mezclas PRF de iso-octano y n-heptano, se ha llevado a cabo la validación de otro mecanismo simplificado para el n-dodecano. Por otro lado, un submodelo de formación y decaimiento de OH* excitado ha sido validado contra resultados de quimioluminiscencia y espectroscopía. Se han estudiado las diferentes fuentes de radiación del proceso de autoencendido para el iso-octano y el n-heptano mediante técnicas de espectroscopía. Además, se han realizado medidas de quimioluminiscencia filtrada a 310nm (longitud de onda de emisión del radical OH*) para el análisis de la generalización y velocidad de propagación del frente de autoencendido. La propagación del encendido ha mostrado ser dependiente de las condiciones termodinámicas alcanzadas en la cámara de combustión en el instante de ignición más que de la reactividad de la mezcla. Se han encontrado dos fuentes de radiación distintas a 310nm mediante espectroscopía, dependiendo de la intensidad del encendido: el decaimiento del radical OH* de estado excitado a estado natural y la oxidación del CO a CO2 (continuo del CO). No obstante, estas técnicas han sido utilizadas solamente para los dos combustibles de referencia de la escala de octanaje debido a limitaciones técnicas. Finalmente, se ha desarrollado un nuevo modelo predictivo de manera teórica partiendo del modelo de Glassman para el autoencendido. Este método se basa en modelar primero la tasa de acumulación de portadores de cadena hasta su concentración crítica (obteniendo así el tiempo de retraso referido a la etapa de llamas frías) y, tras dicho instante, modelar la tasa de consumo de dichos portadores de cadena hasta su completa desaparición (instante en el cual se produce la máxima exotermia del proceso, prediciendo el tiempo de retraso referido a la etapa de alta temperatura del encendido). La capacidad predictiva del modelo ha sido comprobada para cada uno de los seis combustibles ensayados. Además, dicha capacidad predictiva ha sido comparada con la de otros métodos existentes en la literatura, como la integral de Livengood & Wu. La validez de cada uno de los métodos ha sido analizada, definiendo una metodología de uso para obtener predicciones razonables del tiempo de retraso. / L'objectiu d'aquesta Tesi Doctoral és l'estudi del fenomen d'autoencesa de mescles reactives des d'un punt de vista teòric i experimental. S'ha realitzat un ampli estudi paramètric en una Màquina de Compressió-Expansió Ràpida (RCEM per les seues sigles en anglès) cobrint diverses temperatures inicials, relacions de compressió, dosatges relatius i fraccions molars d'oxigen (mitjançant l'ús de EGR sintètic) per a diferents combustibles. El temps de retard del fenomen de flames fredes (en el cas d'existir), així com el temps de retard de l'etapa d'alta temperatura, han sigut obtinguts experimentalment i les seues tendències explicades mitjançant cinètica química. S'han estudiat els diferents efectes de les diferents espècies involucrades en l'EGR sintètic sobre el temps de retard, deslligant aquells de caràcter termodinàmic dels efectes purament químics. S'han tingut en compte diferents composicions per a definir aquest EGR, establint límits de validesa per a cadascuna de les mescles proposades. Els efectes termodinàmics i químics van resultar ser oposats, sent dominant un o un altre a diferents rangs de temperatura de treball. Diversos mecanismes de cinètica química han sigut validats gràcies als resultats experimentals obtinguts. A més d'un mecanisme detallat per a mescles PRF d'iso-octà i n-heptà, s'ha dut a terme la validació d'un altre mecanisme simplificat per al n-dodecà. D'altra banda, un submodel de formació i decaïment d'OH* excitat ha sigut validat contra resultats de quimioluminescència i espectroscopía. S'han estudiat les diferents fonts de radiació del procés d'autoencesa per a l'iso-octà i l'n-heptà mitjançant tècniques d'espectroscopía. A més, s'han realitzat mesures de quimioluminescència filtrada a 310nm (longitud d'ona d'emissió del radical OH*) per a l'anàlisi de la generalització i velocitat de propagació del front d'autoencesa. La propagació de l'encesa ha mostrat ser depenent de les condicions termodinàmiques aconseguides en la cambra de combustió en l'instant d'ignició més que de la reactivitat de la mescla. S'han trobat dues fonts de radiació diferents a 310nm mitjançant espectroscopía, depenent de la intensitat de l'encesa: el decaïment del radical OH* d'estat excitat a estat natural i l'oxidació del CO a CO2 (continu del CO). No obstant açò, aquestes tècniques han sigut utilitzades solament per als dos combustibles de referència de l'escala de octanaje a causa de limitacions tècniques. Finalment, s'ha desenvolupat un nou model predictiu de manera teòrica partint del model de Glassman per a l'autoencesa. Aquest mètode es basa a modelar primer la taxa d'acumulació de portadors de cadena fins a la seua concentració crítica (obtenint així el temps de retard referit a l'etapa de flames fredes) i, després d'aquest instant, modelar la taxa de consum d'aquests portadors de cadena fins a la seua completa desaparició (instant en el qual es produeix la màxima exotermia del procés, predient el temps de retard referit a l'etapa d'alta temperatura de l'encesa). La capacitat predictiva del model ha sigut comprovada per a cadascun dels sis combustibles assajats. A més, aquesta capacitat predictiva ha sigut comparada amb la d'altres mètodes existents en la literatura, com la integral de Livengood & Wu. La validesa de cadascun dels mètodes ha sigut analitzada, definint una metodologia d'ús per a obtenir prediccions raonables del temps de retard. / López Pintor, D. (2017). Theoretical and experimental study on the autoignition phenomena of homogeneous reactive mixtures [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90642

Page generated in 0.1104 seconds