• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 243
  • 42
  • 36
  • 30
  • 12
  • 6
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 602
  • 309
  • 166
  • 135
  • 135
  • 114
  • 98
  • 94
  • 85
  • 70
  • 56
  • 51
  • 50
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Tabulation de la cinétique chimique pour la prédiction des polluants dans les moteurs à combustion interne / Chemical kinetics tabulation for pollutants prediction in internal combustion engines

Tudorache, Diana Elena 26 February 2013 (has links)
Les responsabilités environnementales font que les constructeurs automobiles visent à acquérir des connaissances approfondies sur les phénomènes physico-chimiques des chambres de combustion des moteurs pour la compréhension et le contrôle des émissions polluantes. En dépit des performances remarquables dans le domaine du calcul numérique intensif de très haute performance, les simulations numériques des chambres de combustion des moteurs à combustion interne ne permettent pas encore une description détaillée des processus chimiques. L’objectif de ces travaux est d’améliorer les modèles de combustion turbulente basés sur la Simulation aux Grandes Echelles en développant une méthode de tabulation de la cinétique chimique représentative de la combustion dans un cycle moteur. Une attention toute particulière est portée sur la capacité de la méthode de tabulation à reproduire la formation des espèces polluantes lors des phases de compression, d’auto-allumage et de détente d’un moteur à combustion interne. Cette méthode suppose que la chimie dans une chambre de combustion interne peut être approchée par une tabulation des résultats issus de calculs de réacteurs isochores 0-D, les coordonnées de la table étant: la variable de progrès, l’énergie et la masse volumique. La capacité prédictive de la technique de tabulation a été testée par des simulations d’auto-allumage en volume variable. La méthode de tabulation "Tabulated Thermo Chemistry" (TTC) a été initialement développée pour coupler la cinétique chimique à des solveurs Navier-Stokes compressibles dans des situations d’écoulement à faible nombre de Mach. Dans ce travail, la méthode TTC a été adaptée pour la combustion à pression variable. Une version TTC dédiée à la combustion dans les moteurs est donc implantée dans un code instationnaire LES compressible. La méthode de couplage a été testée avec succès tant sur des configurations simplifiées que sur une Machine à Compression Rapide. / Due to environmental concerns, automotive manufacturers aim at acquiring knowledge of physical and chemical phenomena inside the combustion chamber to understand and control pollutant emissions. Despite the outstanding performances in the domain of high performance intensive numerical calculation, the numerical simulations of the combustion chambers of the internal combustion engines do not allow a detailed description of the chemical processes. The present study aims to improve the turbulent combustion models based on Large Eddy Simulation approach by developing an efficient cost cutting tabulation method to fit chemistry in engine combustion modeling. A particular attention is paid to the capacity of the tabulation method to reproduce the pollutant species formation during the compression stroke, the reaction phase, and the power stroke of an ICE. This method assumes that IC engine chemistry can be mapped by a collection of 0-D reactor computation data, using for coordinates: the progress variable, the energy and the density. In a first step, the chemical prediction capability of this technique is validated on an auto-igniting variable volume simulation. The Tabulated Thermo Chemistry (TTC) method was initially developed to couple the chemical kinetics with compressible Navier-Stokes solvers for low Mach number flows. In this work, the TTC method was adapted in the framework of variable pressure combustion. A TTC version dedicated to engine combustion is thus coupled in an unsteady compressible LES code. The method of coupling was successfully tested both on simplified configurations and on a Rapid Compression Machine.
372

Development of diagnostics for the experimental studies of ignition in sprays / Développement de diagnostics pour l'étude expérimentale d'allumage dans les sprays

Agarwal, Tapish 27 February 2013 (has links)
Le besoin d’allumer avec un temps très court les moteurs aéronautiques a conduit à de nombreuses études. Cependant, le processus d’allumage n’est pas encore parfaitement compris. Beaucoup d’études expérimentales sont basées sur l’obtention de probabilité d’allumage en différents points et sous différentes conditions moyennes de l’écoulement mais peu se sont concentrées sur l’étude d’un évènement unique. La raison pour le peu de compréhension totale est la nature transiente de l’allumage, qui dépend de nombreux paramètres physiques, avant, pendant et après le dépôt de l’énergie. Le but de cette étude est de développer les outils nécessaires à la compréhension d’évènements uniques en mesurant simultanément plusieurs paramètres affectant le processus d’allumage. Une nouvelle technique de mesure; la spectroscopie en deux dimensions de plasma induit par laser (2D-LIPS) a été mise au point pour obtenir les gradients de concentration d’espèces et d’énergie dans un plasma induit par laser. Cette technique se base sur l’utilisation de deux caméras, chacune munies d’un filtre interférentiel centré sur une transition atomique. Cette technique permet d’obtenir la taille initiale du plasma contenant une concentration minimale en combustible, ce qui permet de justifier le succès/l’échec d’un évènement. Elle a d’abord été validée dans une couche de mélange air/oxygène afin d’en déterminer les incertitudes et la résolution spatiale. Elle a ensuite été appliquée à un système d’injection aéronautique. Le débit d’air, préchauffé à 200_C, a été fixé à 10 g/s et les gouttes de dodécane avaient un diamètre moyen de Sauter entre 30 et 40 _m. Cet injecteur présente une instabilité aérodynamique de type Precessing Vortex Core aux alentours de 550 Hz, mesurée par 2D-PIV sur les gouttes à 20 kHz . Les mesures simultanées de 2D-LIPS et et 2D-PIV à 20 kHz ont permis d’établir un scénario d’allumage. Une concentration minimum de dodécane ainsi qu’une taille minimum de plasma sont nécessaires mais non suffisants à un allumage réussi. La force du PVC semble aussi jouer un rôle dans le destin du noyau initial. L’étude propose d’établir des probabilités conditionnées d’allumage en utilisant les mesures de 2D-LIPS. Il est ainsi montré que des essais d’allumage menant à une probabilité non conditionnée de 33% peuvent mener, grâce à la 2D-LIPS, à une probabilité conditionnée de 88%. / The need to ignite within a very short time the aircraft engines led to many studies. However, the ignition process is not yet fully understood. Many experimental studies are based on obtaining ignition probability at different points and in different average flow conditions but few have focused on the study of a single ignition event. The reason for the lack of full understanding is transient nature of the the ignition process, which depends on many physical parameters, before, during and after the deposition of spark energy. The purpose of this study is to develop the tools necessary to understand unique events by simultaneously measuring multiple parameters that affect the ignition process. A new technique of measurement, two-dimensional laser-induced plasma spectroscopy (2D-LIPS) was developed for the spatially resolved concentration gradients of species and energy in a laser-induced plasma. This technique is based on the use of two cameras, each provided with an interference filter centered on a transition atomic emission. This technique provides the initial size of plasma containing the minimum fuel concentration, thereby justifying the success/failure of an event. It was first validated in a mixing layer of air/nitrogen mixture to determine and resolve the spatial uncertainty of the technique. It was then applied to an aviation fuel injection system. The flow of air, preheated to 200_C, was set at 10 g/s and drops of dodecane having a Sauter mean diameter between 30 and 40 _m were inserted. This injector has a aerodynamic instability type Precessing Vortex Core around 550 Hz, measured by 2D-PIV on the droplets at 20 kHz. Simultaneous measurements 2D-LIPS and 2D-PIV at 20 kHz have established a scenario of ignition. A minimum concentration of dodecane and a minimum size of plasma are necessary but not sufficient for a successful ignition. The strength of PVC also appears to play a role in the fate of the initial nucleus. The study proposes to establish conditional probabilities of ignition using measurements by 2D LIPS. It is shown that for ignition tests having an unconditioned probability of 33% show a conditional probability of 88% through the 2D-LIPS measurements.
373

Desempenho de motor de ignição por centelha com álcool etílico pré-evaporado / Performance determination of a spark-ignition combustion-engine, fueled with etanol vapours

Samuel Washington Celere 20 March 1981 (has links)
Determinação do desempenho de um motor à combustão interna com ignição por centelha, sem modificação em sua taxa de compressão volumétrica, usando álcool etílico vaporizado como combustível. Para facilidade de obtenção de dados usou-se um sistema de aquecimento elétrico para a geração do vapor do álcool etílico. Mediu-se as descargas de ar e combustível, a potência no eixo e a temperatura dos gases de escape para vários ângulos de avanço de centelha e rotações do eixo do motor. Os resultados obtidos foram comparados com o desempenho do mesmo motor funcionando com gasolina e álcool, pelo sistema de mistura usando carburador. O processo de vaporização pode ser aplicado a motores do tipo ciclo Otto , que poderão funcionar com álcool etílico ou gasolina, com poucas alterações em seu desempenho. / Performance determination of a spark-ignition combustion-engine, without modification in compression ratio, fueled with etanol vapours. The data acquisition was simplified by the use of an electric heater to generate the etanol vapours. The data acquired are flow of air and fuel, net power and escape gases temperature to various spark advance angles and engine speed. The performance was compared with those obtained with the carburator system motor, gasoline and etanol as fuel. The vaporization process will be applied in Otto cycle engines that may work with etanol or gasoline as fuels, with few performance alterations.
374

Avaliação numérica e experimental do desempenho de um motor Otto operando com etanol hidratado

Lanzanova, Thompson Diordinis Metzka January 2013 (has links)
Uma maneira ecologicamente correta de manejar os recursos energéticos disponíveis e reduzir as emissões de gases de efeito estufa é utilizar biocombustíveis ao invés de combustíveis de origem fóssil em motores de combustão interna. Entretanto, o preço mais alto dos biocombustíveis pode ser um fator limitante para o aumento e viabilização do seu uso. Em relação ao etanol, para se obter misturas com mais de 80% de etanol em água o custo de produção cresce exponencialmente. Assim, se misturas de etanol com alto percentual de água, de menor custo, puderem ser utilizadas em motores de combustão interna com sucesso, esse combustível pode se tornar mais atrativo e mais amplamente utilizado. Este trabalho analisa o desempenho de um motor de ignição por centelha operando com etanol em diferentes percentuais de hidratação, através de simulações computacionais e procedimentos experimentais. Foi utilizado um motor monocilíndrico de 0,668L e naturalmente aspirado, com relação de compressão de 19:1 e injeção direta em pré-câmara, ciclo Diesel, foi modificado para operação em ciclo Otto - injeção de combustível no duto de admissão e relação de compressão de 12:1. Testes em dinamômetro foram conduzidos com o etanol hidratado comercial (95% de etanol e 5% de água) e com misturas de etanol e água com maiores percentuais de hidratação (conteúdo volumétrico de até 60% de etanol e 40% de água). Simulação computacional através de software de volumes finitos unidimensional foi utilizada para realizar a análise da combustão. Foi possível alcançar operação estável com misturas de até 40% de água em etanol e ocorreu aumento de eficiência térmica para misturas de até 30% de água. / An environmentally friendly way to manage the available energetic resources and to reduce greenhouse gas emissions is to use bio instead of fossil fuels in internal combustion engines. However, the sometimes higher prices of biofuels can be a limiting factor for their widespread and viable use. Concerning ethanol and its production costs, to obtain above 80% ethanol-in-water mixtures demands an exponentially increasing energy supply. Hence, if a low-cost high water content ethanol could be successfully burned in internal combustion engines it would be even more attractive and extensively used. This work analyzes the performance of a spark ignition engine running with ethanol with different percentages of hydration through numeric and experimental simulations. To achieve this goal, a 0,668L naturally aspirated single cylinder engine, with compression ratio of 19:1 and pre-chamber direct injection, operating at Diesel cycle was modified to operate in Otto cycle - port fuel injection, with a compression ratio of 12:1. Dynamometer tests were carried out with commercial hydrous ethanol (95% ethanol and 5% water) and water-in-ethanol blends with higher hydration levels (volumetric content up to 60% ethanol and 40% water). Computer simulation through one-dimensional finite volume software was carried out to perform a heat release analysis. It was possible to achieve stable operation with up to 40% water-in-ethanol blends and thermal efficiency increase was achieved for blends with up to 30% of water.
375

Interaction of laser radiation with urinary calculi

Mayo, M E 25 November 2009 (has links)
Urolithias, calculus formation in the urinary system, affects 5 – 10% of the population and is a painful and recurrent medical condition. A common approach in the treatment of calculi is the use of laser radiation, a procedure known as laser lithotripsy, however, the technique has not yet been fully optimised. This research examines the experimental parameters relevant to the interactions of the variable microsecond pulsed holmium laser (λ = 2.12 μm, τp = 120 – 800 μs, I ~ 3 MW cm-2) and the Q-switched neodymium laser (λ = 1064 nm, τp = 6 ns, I ~ 90 GW cm-2) with calculi. The laser-calculus interaction was investigated from two perspectives: actions that lead to calculus fragmentation through the formation of shockwave and plasma, and the prospect of material analysis of calculi by laser induced breakdown spectroscopy (LIBS) to reveal elemental composition. This work is expected to contribute to improved scientific understanding and development of laser lithotripsy. The results support the general model of thermal and plasma processes leading to vaporization and pressure pulses. Nd:YAG laser interaction processes were found to be plasma-mediated and shockwave pressure (~ 12 MPa) dependent on plasma and strongly influenced by metal ions. Ho:YAG laser-induced shockwaves (~ 50 MPa) were found to be due to direct vaporisation of water and dependent on laser pulse duration. The characteristics of the pressure pulse waveforms were found to be different, and the efficiency and repeatability of shockwave and the nature of the dependencies for the lasers suggest different bubble dynamics. For the Nd:YAG laser, LIBS has been demonstrated as a potential tool for in situ analysis of calculus composition and has been used for the identification of major and trace quantities of calcium, magnesium, sodium, potassium, strontium, chromium, iron, copper, lead and other elements.
376

Experimental investigations into high-altitude relight of a gas turbine

Read, Robert William January 2008 (has links)
This thesis describes experiments to investigate high-altitude relight of a lean direct injection (LDI) combustor. The features that make LDI technology less polluting in terms of NOx compared to conventional combustors are expected to impede relight performance. Therefore an improved understanding of ignition behaviour is required to ensure that stringent relight requirements can be satisfied. Realistic operating conditions are simulated in a ground-based test facility. The application of laser diagnostics presents particular difficulties due to the large quantities ofliquid fuel that impinge on the combustor walls during relight. Advances are made in the application of planar laser-induced fluorescence (PLIF) to monitor fuel placement in a combustor under these conditions. A novel apparatus is developed to deliver a laser sheet to the combustion chamber while protecting all optical surfaces from contamination. The PLIF images are compared with the cold flow field obtained from CFD modelling. These results indicate that fuel becomes trapped inside the central recirculation zone in highconcentrations. High-speed flame imaging performed simultaneously with the PLIF measurements provides important insights into the motion and breakup of flame during relight. An algorithm developed to track the flame activity reveals that the initial spark kernel is convected downstream, before breaking apart and moving upstream towards a recovery origin close to the fuel injector. Analysis of many ignition events has revealed several distinct modes of ignition failure.
377

Reactivity of Hydrocarbon Fuels: Reaction Kinetics and Ignition Delay Times

KHALED, Fethi 11 1900 (has links)
This PhD thesis is an analysis of the chemical kinetics and oxidation behavior of fuel components via experiments and correlations. First, a number of experimental studies of the reactivity of OH radicals with unsaturated hydrocarbons are performed at temperatures ranging from 294 to 1400 K by OH absorption and laser induced fluorescence techniques in two different reactors: shock tube and flow reactor. It is found that OH has a tendency to add to the unsaturated CC bond, forming a relatively stable adduct. The thermal stability of these adducts is vital for a better understanding of the kinetics of olefins, poly-olefins, alkynes and other unsaturated components in real and surrogate fuel blends. In this work, the reaction rate coefficient of the reaction of hydroxyl radical with many olefins (butenes, pentenes, hexenes), di-olefins (butadienes, and pentadienes) and allyl radical are measured. A strong competition between H-abstraction and OH-addition pathways is seen particularly in the intermediate temperature window of ~ 400 to 900 K. All of these measured elementary reactions give new insights into the chemical kinetics of fuels and allow modelers to improve the predictive capability of their models. Second, measurements of the ignition delay times of propene, isobutene, 2-methylhexane and 2-methylbutanol in air are performed using a high-pressure shock tube. Details about multi-stage ignition and ignition delay dependence on various thermodynamic properties is investigated for these four hydrocarbons. We followed this with a correlation study of ignition delay times of fuel blends and real fuel streams. The main requirement of these correlations is that these should be predictive enough to compete with the predictive capabilities of detailed chemical kinetic models but at a much reduced computational cost. The obtained correlation scheme does not only predict ignition timing during CFD simulations but also other combustion properties such as low-temperature heat release timing and resulting temperature and pressure increases due to cool flame. A discussion on the weak dependence of high-temperature ignition delay times on the composition of real fuels is also presented, where universal Arrhenius type expressions of ignition delay times of gasoline, diesel and jet fuels are given.
378

Reactivity and Ignition Delay Measurements of Petroleum-based Fuels, Surrogate Fuels and Biofuels

AlAbbad, Mohammed A. 10 1900 (has links)
Energy demand is rapidly increasing due to the increase in population and rising living standards. Petroleum-based fuels account for the main source of energy consumed in the world. However, they are also considered to be the main source of the unwanted emissions to the atmosphere. In this context, chemical kinetic studies of combustion processes are essential for a better understanding of the underlying reactions and to achieve increased combustion efficiency and reduced pollutant emissions. In this study, ignition delay times, a global indicator of fuel reactivity, were measured for promising fuels for use in advanced combustion engines. Also, rate coefficients were measured for promising oxygenated hydrocarbons that can be used as additives to conventional fuels. Ignition delay time measurements of four primary reference fuel (PRF) blends, mixtures considered to be some of the simplest gasoline surrogates, were measured behind reflected shock waves to provide a large experimental dataset to validate PRF chemical kinetic models. The kinetic modeling predictions from four chemical kinetic models were compared with the experimental data. Ignition delay correlations were also developed to reduce the simulation cost of complicated models. Recently, naphtha, a low-octane distillate fuel, has been proposed as a low-cost refinery fuel. Likewise, a mid-octane blend which consists of low-octane (light and heavy naphtha) and high-octane (reformate) distillate fuels has been proposed to power gasoline compression ignition (GCI) engines. In this work, experimental and modeling studies were conducted on low and mid-octane distillate fuels (naphtha and GCI blend) and surrogate candidates to assess their autoignition characteristics for use in advanced internal combustion engines. Oxygenated molecules are considered to be promising additives to conventional fuels. Thermal decomposition of three esters (ethyl levulinate, ethyl propionate and diethyl carbonate ) and a five-member cyclic ketone (cyclopentanone) was investigated in this work. Laser absorption technique was employed to follow the reaction progress by measuring ethylene (C2H4) near 10.532 µm using a CO2 gas laser for the decomposition process of the three esters. The reaction progress of the decomposition of cyclopentanone was followed by monitoring CO formation using a quantum cascade laser at a wavelength near 4.556 µm.
379

The Effect of Orientation on the Ignition of Solids

Morrisset, David 01 June 2020 (has links)
The ignition of a solid is an inherently complex phenomenon influenced by heat and mass transport mechanisms that are, even to this day, not understood in entirety. In order to use ignition data in meaningful engineering application, significant simplifications have been made to the theory of ignition. The most common way to classify ignition is the use of material specific parameters such as such as ignition temperature (Tig) and the critical heat flux for ignition (CHF). These parameters are determined through standardized testing of solid materials – however, the results of these tests are generally used in applications different from the environments in which these parameters were actually determined. Generally, ignition temperature and critical heat flux are used as material properties and are presented readily in sources such as the SFPE Handbook. However, these parameters are not truly material properties; each are inherently affected by the environment in which they are tested. Ignition parameters are therefore system dependent, tied to the conditions in which the parameters are determined. Previous work has demonstrated that ignition parameters (such as Tig or CHF) for the same material can vary depending on whether the sample is tested in a vertical or horizontal orientation. While the results are clear, the implications this may have on the use of ignition data remains uncertain. This work outlines the fundamental theory of ignition as well as a review of studies related to orientation. The aim of this study it to analyze the influence of sample orientation on ignition parameters. All experimental work in this study was conducted using cast black polymethyl methacrylate (PMMA or commonly referred to as acrylic). This study explores ignition parameters for PMMA in various orientations and develops a methodology through which orientation can be incorporated into existing ignition theory. An additional study was also conducted to explore the statistical significance of current flammability test methodologies. Ultimately, this study outlines the problem of the system dependency of ignition and provides commentary on the use of ignition data in engineering applications.
380

Způsoby zapalování jiskřišť / Methods of ignition spark gaps

Pekárek, Dominik January 2015 (has links)
This thesis deals with methods of spark gap ignition. The thesis describes spark gap ignition by external electrode, by Rogowski electrode and by lasers. Advantages and disadvantages of these methods are also discussed. In the final part of the thesis there is described experiment with high voltage spark gap.

Page generated in 0.087 seconds