• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 243
  • 42
  • 36
  • 30
  • 12
  • 6
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 602
  • 309
  • 166
  • 135
  • 135
  • 114
  • 98
  • 94
  • 85
  • 70
  • 56
  • 51
  • 50
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Numerical Study on Combustion Features of Gasified Biomass Gas

Zhang, Xiaoxiang January 2015 (has links)
There is a great interest to develop biomass combustion systems for industrial and utility applications. Improved biomass energy conversion systems are designed to provide better combustion efficiencies and environmental friendly conditions, as well as the fuel flexibility options in various applications. The gas derived from the gasification process of biomass is considered as one of the potential candidates to substitute traditional fuels in a combustion process. However, the gascomposition from the gasification process may have a wide range of variation depending on the methods and fuel sources. The better understanding of the combustion features for the Gasified Biomass Gas(GBG) is essential for the development of combustion devices to be operated efficiently and safely at the user-end. The objective of the current study is therefore aiming to achieve data associated with the combustion features of GBG fuel for improving the efficiency and stability of combustion process. The numerical result is achieved from the kinetic models of premixed combustion with a wide range of operating ranges and variety of gas compositions. The numerical result is compared with experimental data to provide a better understanding of the combustion process for GBG fuel. In this thesis the laminar flame speed and ignition delay time of the GBG fuel are analyzed, using 1-D premixed flame model and constant volume model respectively. The result from different kinetics are evaluated and compared with experimental data. The influences of initial temperature, pressure and equivalence ratio are considered, as well as the variation of gas compositions. While the general agreement is reached between the numerical result and experimental data for laminarflame speed prediction, deviations are discovered at fuel-rich region and increased initial temperature. For the ignition delay time, deviations are found in the low-temperature and low pressure regime. The empirical equations considering the influence of initial temperature,pressure and equivalence ratio are developed for laminar flame speed and ignition delay times. The influence of major compositions such as CO, H2 and hydrocarbons are discussed in details in the thesis. Furthermore, a simplified kinetic model is developed and optimized based on the evaluation of existing kinetics for GBG fuel combustion. The simplified kinetic model is expected to be used for simulating the complexc ombustion process of GBG fuel in future studies. / <p>QC 20150511</p>
392

Auto-Ignition Characteristics of Hydrogen Enriched Natural Gas for Gas Turbine Applications

Loving, Christopher T 01 January 2023 (has links) (PDF)
A successful transition to clean energy hinges on meeting the world's growing energy demand while reducing greenhouse gas emissions. Achieving this will require significant growth in electricity generation from clean and carbon-free energy sources. Several energy providers have already begun the transition from traditional carbon-based fuels to cleaner alternatives, such as hydrogen and hydrogen enriched natural gas. However, there are still many technical challenges that must be addressed when applying these fuels in gas turbines. The application of hydrogen or hydrogen/natural gas blends to advanced class gas turbines, which have higher operating pressures and temperatures has raised concerns about the potential for leakages or fuel sequencing operations where flammable mixtures of fuel and air could auto-ignite. Public information on the auto-ignition of hydrogen in air at atmospheric pressure is well documented. Such data shows the auto-ignition temperature of hydrogen is roughly 100 °C lower than that of methane. Studies also show that as pressure increases, methane's auto-ignition temperature decreases. However, there was insufficient information in the published literature to characterize the influence of pressure on auto-ignition for hydrogen fuel applications. This study describes the test methodology used to evaluate conditions where auto-ignition occurs for various fuel-air mixtures operating at pressures between 1-30 atmospheres and equivalence ratios between 0.2-1.6. Testing was completed with hydrogen, natural gas and blends at various equivalence ratios using a heated volume with multiple reactant delivery methods. Testing was performed for natural gas to validate the test and data collection methods cited in prior published literature. Results indicate that at atmospheric pressures, an increase in hydrogen concentration results in a reduced auto-ignition temperature. However, at 30 atmospheres, the auto-ignition temperature increased with higher hydrogen concentrations. iv Variations of auto-ignition delay times were also observed during the testing and are compared to modeling predictions, providing insight into auto-ignition characteristics.
393

A Computational Study of the Ignition of Premixed Methane and Oxygen via a Hot Stream

Deans, Matthew Charles 02 April 2009 (has links)
No description available.
394

Methylcyclohexane Ignition Delay Times Under a Wide Range of Conditions

Nagulapalli, Aditya 03 June 2015 (has links)
No description available.
395

An MD-SPH Coupled Method for the Simulation of Reactive Energetic Materials

Wang, Guangyu 15 June 2017 (has links)
No description available.
396

Experimental Investigation into the High Altitude Relight Characteristics of a Three-Cup Combustor Sector

Denton, Michael J. January 2017 (has links)
No description available.
397

Computational Investigation of Optimal Heavy Fuel Direct Injection Spark Ignition in Rotary Engine

Benthara Wadumesthrige, Asela A. 23 September 2011 (has links)
No description available.
398

Fuel Structure Effects on Surrogate Alternative Jet Fuel Emission

Flora, Giacomo January 2015 (has links)
No description available.
399

A COMPUTATIONAL INVESTIGATION OF INJECTION STRATEGIES AND SENSITIVITY ANALYSIS OF AN ETHANOL FUELLED PPCI ENGINE

Panakarajupally, Ragavendra Prasad January 2016 (has links)
No description available.
400

The Effect Of Erbium Hydride On The Conversion Efficiency To Accelerated Protons From Ultra-Short Pulse Laser Irradiated Foils

Offermann, Dustin Theodore 29 September 2008 (has links)
No description available.

Page generated in 0.0673 seconds