• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Programming of Microcontroller and/or FPGA for Wafer-Level Applications - Display Control, Simple Stereo Processing, Simple Image Recognition

Pakalapati, Himani Raj January 2013 (has links)
In this work the usage of a WLC (Wafer Level Camera) for ensuring road safety has been presented. A prototype of a WLC along with the Aptina MT9M114 stereoboard has been used for this project. The basic idea is to observe the movements of the driver. By doing so an understanding of whether the driver is concentrating on the road can be achieved. For this project the display of the required scene is captured with a wafer-level camera pair. Using the image pairs stereo processing is performed to obtain the real depth of the objects in the scene. Image recognition is used to separate the object from the background. This ultimately leads to just concentrating on the object which in the present context is the driver.
2

Image Thresholding Technique Based On Fuzzy Partition And Entropy Maximization

Zhao, Mansuo January 2005 (has links)
Thresholding is a commonly used technique in image segmentation because of its fast and easy application. For this reason threshold selection is an important issue. There are two general approaches to threshold selection. One approach is based on the histogram of the image while the other is based on the gray scale information located in the local small areas. The histogram of an image contains some statistical data of the grayscale or color ingredients. In this thesis, an adaptive logical thresholding method is proposed for the binarization of blueprint images first. The new method exploits the geometric features of blueprint images. This is implemented by utilizing a robust windows operation, which is based on the assumption that the objects have &quote;C&quote; shape in a small area. We make use of multiple window sizes in the windows operation. This not only reduces computation time but also separates effectively thin lines from wide lines. Our method can automatically determine the threshold of images. Experiments show that our method is effective for blueprint images and achieves good results over a wide range of images. Second, the fuzzy set theory, along with probability partition and maximum entropy theory, is explored to compute the threshold based on the histogram of the image. Fuzzy set theory has been widely used in many fields where the ambiguous phenomena exist since it was proposed by Zadeh in 1965. And many thresholding methods have also been developed by using this theory. The concept we are using here is called fuzzy partition. Fuzzy partition means that a histogram is parted into several groups by some fuzzy sets which represent the fuzzy membership of each group because our method is based on histogram of the image . Probability partition is associated with fuzzy partition. The probability distribution of each group is derived from the fuzzy partition. Entropy which originates from thermodynamic theory is introduced into communications theory as a commonly used criteria to measure the information transmitted through a channel. It is adopted by image processing as a measurement of the information contained in the processed images. Thus it is applied in our method as a criterion for selecting the optimal fuzzy sets which partition the histogram. To find the threshold, the histogram of the image is partitioned by fuzzy sets which satisfy a certain entropy restriction. The search for the best possible fuzzy sets becomes an important issue. There is no efficient method for the searching procedure. Therefore, expansion to multiple level thresholding with fuzzy partition becomes extremely time consuming or even impossible. In this thesis, the relationship between a probability partition (PP) and a fuzzy C-partition (FP) is studied. This relationship and the entropy approach are used to derive a thresholding technique to select the optimal fuzzy C-partition. The measure of the selection quality is the entropy function defined by the PP and FP. A necessary condition of the entropy function arriving at a maximum is derived. Based on this condition, an efficient search procedure for two-level thresholding is derived, which makes the search so efficient that extension to multilevel thresholding becomes possible. A novel fuzzy membership function is proposed in three-level thresholding which produces a better result because a new relationship among the fuzzy membership functions is presented. This new relationship gives more flexibility in the search for the optimal fuzzy sets, although it also increases the complication in the search for the fuzzy sets in multi-level thresholding. This complication is solved by a new method called the &quote;Onion-Peeling&quote; method. Because the relationship between the fuzzy membership functions is so complicated it is impossible to obtain the membership functions all at once. The search procedure is decomposed into several layers of three-level partitions except for the last layer which may be a two-level one. So the big problem is simplified to three-level partitions such that we can obtain the two outmost membership functions without worrying too much about the complicated intersections among the membership functions. The method is further revised for images with a dominant area of background or an object which affects the appearance of the histogram of the image. The histogram is the basis of our method as well as of many other methods. A &quote;bad&quote; shape of the histogram will result in a bad thresholded image. A quadtree scheme is adopted to decompose the image into homogeneous areas and heterogeneous areas. And a multi-resolution thresholding method based on quadtree and fuzzy partition is then devised to deal with these images. Extension of fuzzy partition methods to color images is also examined. An adaptive thresholding method for color images based on fuzzy partition is proposed which can determine the number of thresholding levels automatically. This thesis concludes that the &quote;C&quote; shape assumption and varying sizes of windows for windows operation contribute to a better segmentation of the blueprint images. The efficient search procedure for the optimal fuzzy sets in the fuzzy-2 partition of the histogram of the image accelerates the process so much that it enables the extension of it to multilevel thresholding. In three-level fuzzy partition the new relationship presentation among the three fuzzy membership functions makes more sense than the conventional assumption and, as a result, performs better. A novel method, the &quote;Onion-Peeling&quote; method, is devised for dealing with the complexity at the intersection among the multiple membership functions in the multilevel fuzzy partition. It decomposes the multilevel partition into the fuzzy-3 partitions and the fuzzy-2 partitions by transposing the partition space in the histogram. Thus it is efficient in multilevel thresholding. A multi-resolution method which applies the quadtree scheme to distinguish the heterogeneous areas from the homogeneous areas is designed for the images with large homogeneous areas which usually distorts the histogram of the image. The new histogram based on only the heterogeneous area is adopted for partition and outperforms the old one. While validity checks filter out the fragmented points which are only a small portion of the whole image. Thus it gives good thresholded images for human face images.
3

Image Thresholding Technique Based On Fuzzy Partition And Entropy Maximization

Zhao, Mansuo January 2005 (has links)
Thresholding is a commonly used technique in image segmentation because of its fast and easy application. For this reason threshold selection is an important issue. There are two general approaches to threshold selection. One approach is based on the histogram of the image while the other is based on the gray scale information located in the local small areas. The histogram of an image contains some statistical data of the grayscale or color ingredients. In this thesis, an adaptive logical thresholding method is proposed for the binarization of blueprint images first. The new method exploits the geometric features of blueprint images. This is implemented by utilizing a robust windows operation, which is based on the assumption that the objects have &quote;C&quote; shape in a small area. We make use of multiple window sizes in the windows operation. This not only reduces computation time but also separates effectively thin lines from wide lines. Our method can automatically determine the threshold of images. Experiments show that our method is effective for blueprint images and achieves good results over a wide range of images. Second, the fuzzy set theory, along with probability partition and maximum entropy theory, is explored to compute the threshold based on the histogram of the image. Fuzzy set theory has been widely used in many fields where the ambiguous phenomena exist since it was proposed by Zadeh in 1965. And many thresholding methods have also been developed by using this theory. The concept we are using here is called fuzzy partition. Fuzzy partition means that a histogram is parted into several groups by some fuzzy sets which represent the fuzzy membership of each group because our method is based on histogram of the image . Probability partition is associated with fuzzy partition. The probability distribution of each group is derived from the fuzzy partition. Entropy which originates from thermodynamic theory is introduced into communications theory as a commonly used criteria to measure the information transmitted through a channel. It is adopted by image processing as a measurement of the information contained in the processed images. Thus it is applied in our method as a criterion for selecting the optimal fuzzy sets which partition the histogram. To find the threshold, the histogram of the image is partitioned by fuzzy sets which satisfy a certain entropy restriction. The search for the best possible fuzzy sets becomes an important issue. There is no efficient method for the searching procedure. Therefore, expansion to multiple level thresholding with fuzzy partition becomes extremely time consuming or even impossible. In this thesis, the relationship between a probability partition (PP) and a fuzzy C-partition (FP) is studied. This relationship and the entropy approach are used to derive a thresholding technique to select the optimal fuzzy C-partition. The measure of the selection quality is the entropy function defined by the PP and FP. A necessary condition of the entropy function arriving at a maximum is derived. Based on this condition, an efficient search procedure for two-level thresholding is derived, which makes the search so efficient that extension to multilevel thresholding becomes possible. A novel fuzzy membership function is proposed in three-level thresholding which produces a better result because a new relationship among the fuzzy membership functions is presented. This new relationship gives more flexibility in the search for the optimal fuzzy sets, although it also increases the complication in the search for the fuzzy sets in multi-level thresholding. This complication is solved by a new method called the &quote;Onion-Peeling&quote; method. Because the relationship between the fuzzy membership functions is so complicated it is impossible to obtain the membership functions all at once. The search procedure is decomposed into several layers of three-level partitions except for the last layer which may be a two-level one. So the big problem is simplified to three-level partitions such that we can obtain the two outmost membership functions without worrying too much about the complicated intersections among the membership functions. The method is further revised for images with a dominant area of background or an object which affects the appearance of the histogram of the image. The histogram is the basis of our method as well as of many other methods. A &quote;bad&quote; shape of the histogram will result in a bad thresholded image. A quadtree scheme is adopted to decompose the image into homogeneous areas and heterogeneous areas. And a multi-resolution thresholding method based on quadtree and fuzzy partition is then devised to deal with these images. Extension of fuzzy partition methods to color images is also examined. An adaptive thresholding method for color images based on fuzzy partition is proposed which can determine the number of thresholding levels automatically. This thesis concludes that the &quote;C&quote; shape assumption and varying sizes of windows for windows operation contribute to a better segmentation of the blueprint images. The efficient search procedure for the optimal fuzzy sets in the fuzzy-2 partition of the histogram of the image accelerates the process so much that it enables the extension of it to multilevel thresholding. In three-level fuzzy partition the new relationship presentation among the three fuzzy membership functions makes more sense than the conventional assumption and, as a result, performs better. A novel method, the &quote;Onion-Peeling&quote; method, is devised for dealing with the complexity at the intersection among the multiple membership functions in the multilevel fuzzy partition. It decomposes the multilevel partition into the fuzzy-3 partitions and the fuzzy-2 partitions by transposing the partition space in the histogram. Thus it is efficient in multilevel thresholding. A multi-resolution method which applies the quadtree scheme to distinguish the heterogeneous areas from the homogeneous areas is designed for the images with large homogeneous areas which usually distorts the histogram of the image. The new histogram based on only the heterogeneous area is adopted for partition and outperforms the old one. While validity checks filter out the fragmented points which are only a small portion of the whole image. Thus it gives good thresholded images for human face images.
4

Context Dependent Thresholding and Filter Selection for Optical Character Recognition

Kieri, Andreas January 2012 (has links)
Thresholding algorithms and filters are of great importance when utilizing OCR to extract information from text documents such as invoices. Invoice documents vary greatly and since the performance of image processing methods when applied to those documents will vary accordingly, selecting appropriate methods is critical if a high recognition rate is to be obtained. This paper aims to determine if a document recognition system that automatically selects optimal processing methods, based on the characteristics of input images, will yield a higher recognition rate than what can be achieved by a manual choice. Such a recognition system, including a learning framework for selecting optimal thresholding algorithms and filters, was developed and evaluated. It was established that an automatic selection will ensure a high recognition rate when applied to a set of arbitrary invoice images by successfully adapting and avoiding the methods that yield poor recognition rates.
5

AN INVESTIGATION OF THE EFFECTIVENESS OF RGB VEGETATION INDICES USING IMAGE THRESHODLING AND UAV-BASED IMGAERIES

Huanyang, Zhao 04 April 2023 (has links)
No description available.
6

Stabilizace obrazu / Image Stabilization

Ohrádka, Marek January 2012 (has links)
This thesis deals with digital image stabilization. It contains a brief overview of the problem and available methods for digital image stabilization. The aim was to design and implement image stabilization system in JAVA, which is designed for RapidMiner. Two new stabilization methods have been proposed. The first is based on the motion estimation and motion compensation using Full-search and Three-step search algorithms. The basis of the second method is the detection of object boundaries. The functionality of the proposed method was tested on video sequences with contain visible shake of the scene, which has beed created for this purpose. Testing results show that with the proper set of input parameters for the object border detection method, successful stabilization of the scene is achieved. The rate of error reduction between images is approximately about 65 to 85%. The output of the method is stabilized image sequence and a set of metadata collected during stabilization, which can be further processed in an environment of RapidMiner.
7

Pokročilé metody segmentace cévního řečiště na fotografiích sítnice / Advanced retinal vessel segmentation methods in colour fundus images

Svoboda, Ondřej January 2013 (has links)
Segmentation of vasculature tree is an important step of the process of image processing. There are many methods of automatic blood vessel segmentation. These methods are based on matched filters, pattern recognition or image classification. Use of automatic retinal image processing greatly simplifies and accelerates retinal images diagnosis. The aim of the automatic image segmentation algorithms is thresholding. This work primarily deals with retinal image thresholding. We discuss a few works using local and global image thresholding and supervised image classification to segmentation of blood tree from retinal images. Subsequently is to set of results from two different methods used image classification and discuss effectiveness of the vessel segmentation. Use image classification instead of global thresholding changed statistics of first method on healthy part of HRF. Sensitivity and accuracy decreased to 62,32 %, respectively 94,99 %. Specificity increased to 95,75 %. Second method achieved sensitivity 69.24 %, specificity 98.86% and 95.29 % accuracy. Combining the results of both methods achieved sensitivity up to72.48%, specificity to 98.59% and the accuracy to 95.75%. This confirmed the assumption that the classifier will achieve better results. At the same time, was shown that extend the feature vector combining the results from both methods have increased sensitivity, specificity and accuracy.

Page generated in 0.0645 seconds