• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 2
  • Tagged with
  • 41
  • 18
  • 18
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Regulation of COX-2 signaling in the blood brain barrier

Salagic, Belma January 2009 (has links)
<p>Upon an inflammation the immune system signals the brain by secreted cytokines to elicit central nervous responses such as fever, loss of appetite and secretion of stress hormones. Since the blood brain barrier, (BBB) protects the brain from unwanted material, molecules like cytokines are not allowed to cross the barrier and enter the brain. However, it is clear that they in some way can signal the brain upon an inflammation. Many suggestions concerning this signaling has been made, one being that cytokines bind to receptors on the endothelial cells of the blood vessels of the brain and trigger the production of prostaglandins that can cross the BBB. This conversion is catalyzed by the enzyme cyclooxygenase-2, (COX-2), which is induced by transcription factors like NF-κB in response to cytokines. One of the central nervous responses to inflammatory stimuli is activation of the HPA-axis whose main purpose is glucocorticoid production. Glucocorticoids inhibit the inflammatory response by suppressing gene transcription of pro-inflammatory genes including those producing prostaglandins through direct interference with transcription factors such as NF-κB or initiation of transcription of anti-inflammatory genes like IκB or IL-10. It has however not been clear if glucocorticoids can target the endothelial cells of the brain in order to provide negative feed-back on the immune-to-brain signaling, and in that way inhibit central nervous inflammatory symptoms. An anatomical prerequisite for such a mechanism would be that the induced prostaglandin production occurs in cells expressing GR. This has however never been demonstrated. Here I show that a majority of the brain endothelial cells expressing the prostaglandin synthesizing enzyme COX-2 in response to immune challenge also express the glucocorticoid receptor, (GR). This indicates that immune-to-brain signaling is a target for negative regulation of inflammatory signaling executed by glucocorticoids and identifies brain endothelial GR as a possible future drug target for treatment of central nervous responses to inflammation such as fever and pain.</p>
32

Methicillin Resistance in Staphylococcus pseudintermedius

Black, Chad Christopher 01 August 2010 (has links)
Staphylococcus pseudintermedius affecting dogs is analogous to S. aureus on humans, acting as both normal flora and opportunistic pathogen. Methicillin resistance in S. pseudintermedius is recent, with the first documented occurrence of an isolate bearing the methicillin resistance gene, mecA, in 1999. This gene encodes penicillin binding protein 2a, which renders all beta-lactam drugs ineffective and functions as a “gateway” antibiotic resistance determinant. In the presence of ineffective antibiotics, opportunities for mutational events and acquisition of mobile genetic elements increase as microbial densities increase, often leading to multi-drug resistance. Methicillin-resistant S. pseudintermedius (MRSP) infections have become increasingly common. For example, approximately 30% of the S. pseudintermedius isolates tested by the University of Tennessee College of Veterinary Medicine Clinical Bacteriology Laboratory are resistant to methicillin. An increasing number of MRSP isolates are also resistant to most clinically useful antibiotics available to veterinarians except for chloramphenicol, and resistance to this antibiotic is common among European MRSP isolates. Chloramphenicol resistance has begun to appear in the US and if this trend continues there may soon be few viable antibiotic treatment options. Compared with the arrival of methicillin-resistant S. aureus in the 1960s, the opportunity currently exists to apply advanced molecular methods early in this recognized emergence of MRSP. To that end I have pursued projects utilizing multilocus sequence typing, pulsed-field electrophoresis, and SCCmec characterization of both susceptible and resistant S. pseudintermedius. The initial result was the detection of a clonal population of MRSP in the southeastern United States. Further characterization of this and other clonal lineages using genomic sequencing and real-time RT-PCR expression analysis of antibiotic resistance and quorum sensing genes revealed a marked difference in the regulation of antibiotic resistance between regional clones. These discoveries have interesting epidemiological implications and provide a foundation for the development of novel therapeutics to circumvent the expanding antibiotic resistance repertoire of MRSP. Potential targets identified by this work include membrane-bound beta-lactamase receptors responsible for the regulation of mecA, non-cognate auto-inducing peptides, and synthetic antisense oligonucleotides.
33

Regulation of COX-2 signaling in the blood brain barrier

Salagic, Belma January 2009 (has links)
Upon an inflammation the immune system signals the brain by secreted cytokines to elicit central nervous responses such as fever, loss of appetite and secretion of stress hormones. Since the blood brain barrier, (BBB) protects the brain from unwanted material, molecules like cytokines are not allowed to cross the barrier and enter the brain. However, it is clear that they in some way can signal the brain upon an inflammation. Many suggestions concerning this signaling has been made, one being that cytokines bind to receptors on the endothelial cells of the blood vessels of the brain and trigger the production of prostaglandins that can cross the BBB. This conversion is catalyzed by the enzyme cyclooxygenase-2, (COX-2), which is induced by transcription factors like NF-κB in response to cytokines. One of the central nervous responses to inflammatory stimuli is activation of the HPA-axis whose main purpose is glucocorticoid production. Glucocorticoids inhibit the inflammatory response by suppressing gene transcription of pro-inflammatory genes including those producing prostaglandins through direct interference with transcription factors such as NF-κB or initiation of transcription of anti-inflammatory genes like IκB or IL-10. It has however not been clear if glucocorticoids can target the endothelial cells of the brain in order to provide negative feed-back on the immune-to-brain signaling, and in that way inhibit central nervous inflammatory symptoms. An anatomical prerequisite for such a mechanism would be that the induced prostaglandin production occurs in cells expressing GR. This has however never been demonstrated. Here I show that a majority of the brain endothelial cells expressing the prostaglandin synthesizing enzyme COX-2 in response to immune challenge also express the glucocorticoid receptor, (GR). This indicates that immune-to-brain signaling is a target for negative regulation of inflammatory signaling executed by glucocorticoids and identifies brain endothelial GR as a possible future drug target for treatment of central nervous responses to inflammation such as fever and pain.
34

Nonlinear Hierarchical Models for Longitudinal Experimental Infection Studies

Singleton, Michael David 01 January 2015 (has links)
Experimental infection (EI) studies, involving the intentional inoculation of animal or human subjects with an infectious agent under controlled conditions, have a long history in infectious disease research. Longitudinal infection response data often arise in EI studies designed to demonstrate vaccine efficacy, explore disease etiology, pathogenesis and transmission, or understand the host immune response to infection. Viral loads, antibody titers, symptom scores and body temperature are a few of the outcome variables commonly studied. Longitudinal EI data are inherently nonlinear, often with single-peaked response trajectories with a common pre- and post-infection baseline. Such data are frequently analyzed with statistical methods that are inefficient and arguably inappropriate, such as repeated measures analysis of variance (RM-ANOVA). Newer statistical approaches may offer substantial gains in accuracy and precision of parameter estimation and power. We propose an alternative approach to modeling single-peaked, longitudinal EI data that incorporates recent developments in nonlinear hierarchical models and Bayesian statistics. We begin by introducing a nonlinear mixed model (NLMM) for a symmetric infection response variable. We employ a standard NLMM assuming normally distributed errors and a Gaussian mean response function. The parameters of the model correspond directly to biologically meaningful properties of the infection response, including baseline, peak intensity, time to peak and spread. Through Monte Carlo simulation studies we demonstrate that the model outperforms RM-ANOVA on most measures of parameter estimation and power. Next we generalize the symmetric NLMM to allow modeling of variables with asymmetric time course. We implement the asymmetric model as a Bayesian nonlinear hierarchical model (NLHM) and discuss advantages of the Bayesian approach. Two illustrative applications are provided. Finally we consider modeling of viral load. For several reasons, a normal-errors model is not appropriate for viral load. We propose and illustrate a Bayesian NLHM with the individual responses at each time point modeled as a Poisson random variable with the means across time points related through a Tricube mean response function. We conclude with discussion of limitations and open questions, and a brief survey of broader applications of these models.
35

ROLE OF VIRAL AND HOST FACTORS IN INFLUENZA VIRUS MEDIATED INHIBITION OF INTERLEUKIN-23

Tiwari, Ashish 01 January 2014 (has links)
Influenza virus is one of the major respiratory pathogens of humans as well as animals, including equines. There is an increasing evidence that bacterial infections are the most common cause of the death during influenza. In horses also, secondary bacterial pneumonia can lead to death, and surviving horses may take up to six months for the complete recovery resulting in heavy economic loss to the equine industry. Interleukin (IL)-23 mediated innate immune response has been shown to protect the host from various respiratory bacterial infections. However, studies to investigate the role of host and viral factors in the regulation of IL-23 are limited. Endoplasmic reticulum (ER) stress-induced transcription factor CHOP-10 and IFN-β has been shown to participate in the regulation of IL-23. Primary hypothesis for the current study was that influenza A virus (IAV) NS1 protein downregulates the IL-23 expression via inhibition of CHOP-10. In order to test our hypothesis, we infected the RAW264.7 cells - a murine macrophage cell line, and primary murine alveolar macrophage cells either with the wild type Influenza A virus (PR/8/34, PR8) or isogenic mutant virus lacking NS1 (delNS1). Quantitative analysis of mRNA expression revealed a significantly higher mRNA expression of IL23p19, IFN-β and CHOP-10 in delNS1 virus infected cells as compared the PR8 virus infected cells. Additionally, overexpression of CHOP-10 partially restored the expression of IL-23p19 in PR8 virus infected cells and knockdown of CHOP-10 resulted in downregulated expression of IL-23p19 in delNS1 infected cells. Taken together, these results suggest that IAV NS1 protein mediated inhibition of CHOP-10 expression leads to downregulation of IL-23 expression in macrophage cells in-vitro. Similar results were also observed in-vivo using IAV and Streptococcus zoooepidemicus (S. ze) co-infection model. In a co-infection mouse model delNS1 virus co-infection resulted in significantly higher expression of the IL-23 and IL-17. Considering the role of IL-23 in protection against respiratory bacterial pathogens, effect of exogenous supplementation of IL-23 was also investigated in the influenza and S. ze co-infection mouse model. We found that a single intranasal dose of recombinant murine IL-23 significantly improved the survival of mice co-infected with PR8 and S .ze. Overall, our study suggests that IAV infection subverts the IL-23 mediated respiratory innate immune response and restoration of IL-23 could protect from influenza-associated respiratory bacterial infections.
36

A New All-Natural Wound Treatment Gel Shows Strong Inhibitory Activity Against Staphylococcus aureus and Other Wound Pathogens

Nelson, Tasha K. 01 May 2021 (has links)
Skin related injuries are some of the most dangerous forms of wounds. In addition to treating the wound itself, health care providers must be cautious of microbial infections. In this study, we evaluate a novel all-natural antimicrobial gel compound (AMG) designed to kill planktonic bacteria, penetrate bacterial biofilms, and accelerate wound healing. In -vitro experiments demonstrate that AMG is effective in inhibiting planktonic growth and biofilm development of eight common pathogens. LIVE/DEAD staining and confocal microscopy reveal that planktonic growth and three-dimensional structure of biofilms were significantly reduced. Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) was used to investigate a small panel of genes (PrsA, Sprx) and showed potential targets for future study. A physiologically relevant wound model was created for treating S. aureus infections by using AMG alone or in combination with a common topical antibiotic, Mupirocin. AMG is a safe and effective treatment option for skin related infection.
37

Increased coding potential of Bovine Herpesvirus 1

Jefferson, Victoria 08 December 2023 (has links) (PDF)
Bovine respiratory disease (BRD) costs the cattle industry millions of dollars in costs in treatment and loss every year in the United States. A significant pathogen often contributes to BRD is Bovine Herpesvirus 1 (BoHV-1), a double stranded DNA virus with the ability to establish latency in the trigeminal ganglia and neurons. Primary infection with BoHV-1 results in immunosuppression that increases the risk of secondary bacterial infection and pneumonia. Because herpesviruses infect their hosts for life and can be reactivated in times of stress, BoHV-1 can present a recurring risk of BRD. The following research aims to expand the knowledge of the genome of this costly agricultural pathogen and provide evidence of viral features that can be further explored to increase the efficiency of its control.
38

CELLULAR AND MOLECULAR BASIS OF EQUINE ARTERITIS VIRUS PERSISTENT INFECTION IN THE STALLION REPRODUCTIVE TRACT: CHARACTERIZATION OF LOCAL HOST-PATHOGEN INTERACTIONS MEDIATING LONG-TERM VIRAL PERSISTENCE

Carossino, Mariano 01 January 2018 (has links)
Equine arteritis virus (EAV) has a global impact on the equine industry being the causative agent of equine viral arteritis (EVA), a reproductive, respiratory, and systemic disease of equids. A distinctive feature of EAV infection is that it establishes long-term persistent infection in the reproductive tract of stallions and is continuously shed in the semen (carrier state). Recent studies showed that long-term persistence is associated with a specific allele of the CXCL16 gene (CXCL16S). However, the cellular and molecular mechanisms underlying the establishment and maintenance of persistent infection are yet to be determined. The studies were undertaken herein unequivocally demonstrated that the ampulla is the main EAV tissue reservoir rather than immunologically privileged tissues (i.e., testes) and that EAV has specific tropism for stromal cells and CD8+ T and CD21+ B lymphocytes but not glandular epithelium in the reproductive tract. Furthermore, persistent EAV infection is associated with a significant humoral, mucosal antibody and inflammatory response at the site of persistence, characterized by induction of high levels of neutralizing antibodies (IgG1), mucosal anti-EAV-specific IgA, IgG1, IgG3/5, and IgG4/7 with variable neutralizing efficacy; and moderate, multifocal lymphoplasmacytic ampullitis, with significant infiltration of T lymphocytes (mainly CD8+ and low numbers of FOXP3+ lymphocytes), CD21+ B lymphocytes, diverse Ig-secreting plasma cells, and Iba-1+ and CD83+ tissue macrophages/dendritic cells. Moreover, EAV long-term persistent infection is associated with a CD8+ T lymphocyte transcriptional profile with upregulation of T-cell exhaustion-related transcripts and homing chemokines/chemokine receptors (CXCL9-11/CXCR3 and CXCL16/CXCR6), orchestrated by a specific subset of transcription factors (EOMES, PRDM1, BATF, NFATC2, STAT1, IRF1, TBX21), which are associated with the presence of the susceptibility allele (CXCL16S). Finally, these studies have determined that long-term EAV persistence is associated with the downregulation of a specific seminal exosome-associated miRNA (eca-mir-128) along with an enhanced expression of CXCL16 in the reproductive tract, a putative target of eca-mir-128. These findings provide evidence that this miRNA plays a crucial role in the regulation of the CXCL16/CXCR6 axis in the reproductive tract of persistently infected stallions, a chemokine axis strongly implicated in EAV persistence. The findings presented herein suggest that complex host-pathogen interactions shape the outcome of EAV infection in the stallion and that EAV employs complex immune evasion mechanisms favoring persistence in the reproductive tract. Further studies to identify specific mechanisms mediating the modulation of the CXCL16/CXCR6 axis and viral immune evasion in the reproductive tract of the EAV long-term carrier stallion are warranted.
39

Evaluation of the virulence potential of avian pathogenic Escherichia coli isolated from broiler breeders with colibacillosis in Mississippi

Joseph, Jiddu 08 August 2023 (has links) (PDF)
Avian pathogenic Escherichia coli (APEC) is a bacterium that is responsible for colibacillosis in birds. However, information about broiler breeder APEC isolates is limited, but the data is critical due to the transfer of this bacteria down the production pyramid to progenies resulting in high mortality. Therefore, we evaluated the phenotypic virulence characteristics of 28 isolates using embryo lethality and day-old chick challenge assays. Also, the in vitro adhesion and invasion potential of selected nine isolates were identified. Results showed more than 1/3rd of the isolates were highly virulent and the virulence increased as the number of virulence-associated genes increased. High adhesion and invasion rates were observed among the isolates. Overall, the study helped us to evaluate the virulence characteristics of APEC from broiler breeders. However, future studies based on whole genome approach would help to identify the specific targets which can be used to develop effective interventions.
40

Analysis of Immune Pathways Which Jeopardize Long-Term Pancreatic Islet Allograft Survival in the Liver

Lunsford, Keri Elizabeth 14 July 2005 (has links)
No description available.

Page generated in 0.0554 seconds