Spelling suggestions: "subject:"SOS desponse"" "subject:"SOS coresponse""
1 |
Design and characterization of LexA dimer interface mutantsOsman, Khan Tanjid 24 February 2010
Two key proteins, LexA and RecA, are involved in regulation of the SOS expression system in bacteria. LexA and RecA act as the transcriptional repressor and inducer of the SOS operon, respectively. LexA downregulates the expression of at least 43 unlinked genes and activated RecA interacts with the repressor LexA and therefore, LexA undergoes self-cleavage. The ability of the LexA protein to dimerize is critical for its ability to repress SOS-regulated genes in vivo, as the N-terminal domain (NTD) alone has a lower DNA-binding affinity without the C-terminal domain (CTD) and the components for the dimerization of LexA are located in the CTD. Two antiparallel β-strands (termed β-11) in the CTD at the dimer interface of LexA are involved in the dimerization. LexA interacts with the active form of RecA in vivo during the SOS response. It was determined experimentally that monomeric and non-cleavable LexA binds more tightly to RecA and is resistant to self-cleavage. Therefore, we reasoned that if we can produce such LexA mutants we would be able to stabilize the LexA and active RecA complex for crystallization. Therefore, in this experiment, we attempted to make a non-cleavable and predominantly monomeric LexA that interacts intimately with RecA. We produced four single mutations at the dimer interface of the non-cleavable and NTD-truncated mutant of LexA (∆68LexAK156A) in order to weaken the interactions at the interface. The predominant forms of LexA mutants and the affinities of interaction between the mutant LexA proteins and RecA were examined. ∆68LexAK156AR197P mutant was found as predominantly monomeric at a concentration of 33.3 μM both by gel filtration chromatography and dynamic light scattering (DLS) experiments. It also bound RecA more tightly than wild-type LexA. Another mutant, ∆68LexAK156AI196Y, was also found as predominantly monomeric at a concentration of 33.3 μM by DLS. Both these proteins were subjected to crystallization with wild-type RecA protein. We were able to produce some predominantly monomeric LexA with good binding affinity for RecA; however, we were unsuccessful in co-crystallization.
|
2 |
Design and characterization of LexA dimer interface mutantsOsman, Khan Tanjid 24 February 2010 (has links)
Two key proteins, LexA and RecA, are involved in regulation of the SOS expression system in bacteria. LexA and RecA act as the transcriptional repressor and inducer of the SOS operon, respectively. LexA downregulates the expression of at least 43 unlinked genes and activated RecA interacts with the repressor LexA and therefore, LexA undergoes self-cleavage. The ability of the LexA protein to dimerize is critical for its ability to repress SOS-regulated genes in vivo, as the N-terminal domain (NTD) alone has a lower DNA-binding affinity without the C-terminal domain (CTD) and the components for the dimerization of LexA are located in the CTD. Two antiparallel β-strands (termed β-11) in the CTD at the dimer interface of LexA are involved in the dimerization. LexA interacts with the active form of RecA in vivo during the SOS response. It was determined experimentally that monomeric and non-cleavable LexA binds more tightly to RecA and is resistant to self-cleavage. Therefore, we reasoned that if we can produce such LexA mutants we would be able to stabilize the LexA and active RecA complex for crystallization. Therefore, in this experiment, we attempted to make a non-cleavable and predominantly monomeric LexA that interacts intimately with RecA. We produced four single mutations at the dimer interface of the non-cleavable and NTD-truncated mutant of LexA (∆68LexAK156A) in order to weaken the interactions at the interface. The predominant forms of LexA mutants and the affinities of interaction between the mutant LexA proteins and RecA were examined. ∆68LexAK156AR197P mutant was found as predominantly monomeric at a concentration of 33.3 μM both by gel filtration chromatography and dynamic light scattering (DLS) experiments. It also bound RecA more tightly than wild-type LexA. Another mutant, ∆68LexAK156AI196Y, was also found as predominantly monomeric at a concentration of 33.3 μM by DLS. Both these proteins were subjected to crystallization with wild-type RecA protein. We were able to produce some predominantly monomeric LexA with good binding affinity for RecA; however, we were unsuccessful in co-crystallization.
|
3 |
Reca Dynamics & the SOS Response in Escherichia Coli: Cellular Limitation of Inducing FilamentsMassoni, Shawn Christopher 01 February 2013 (has links)
During the course of normal DNA replication, replication forks are constantly encountering "housekeeping" types of routine damage to the DNA template that may cause the forks to stall or collapse. One product of this fork collapse is the induction of the SOS response, a coordinated global response to help pause the growth and replication of a cell while DNA damage is addressed and repaired. In E. coli, this response is activated by the formation of ssDNA, to which the RecA protein binds and forms a nucleoprotein filament, which acts as the activator for autocleavage of the LexA transcriptional repressor, which normally represses expression of SOS genes. Damage responses are crucial to maintaining genomic integrity, and are therefore essential to all forms of life, and this type of regulatory system is highly conserved. However, cells have mechanisms for tightly regulating induction of these responses, and can often repair routine damage to their chromosomes without the need to induce SOS. This is chiefly evidenced by the observation that more than 20% of cells in a population have RecA filaments, but less than 1% are induced for SOS. How cells make this decision to induce SOS is the subject of this work.
This dissertation describes three projects aimed at examining molecular mechanisms by which cells regulate RecA filaments, and therefore the decision to induce the SOS response. The first examines the disparity between the formation of RecA filaments, as evidenced by RecA-GFP foci, and the induction of SOS in the absence of damage, using a psulA-gfp reporter system. It is shown that there are three independent factors that repress SOS expression in undamaged E. coli cells. These are radA, the amount of recA in the cell, and in some circumstances recX. The first two limit SOS in wild type cells in the absence of external damage, while the third is an additional factor required in xthA mutants, likely due to the fact there are more RecA loading events in these mutants. These factors are thought to change the character and reduce the half-life and persistence of RecA filaments in the cell.
The second project shows that suppression of SOS through the use of recA4162 and uvrD303 mutants is substrate and situation-specific. This specificity is demonstrated by the fact that, while both recA4162 and uvrD303 can suppress SOS in the SOS constitutive mutant recA730, recA4162 can only suppress SOS when the signal occurs at replication forks and not at any other place on the chromosome, while uvrD303 appears to suppress SOS with less specificity, and can suppress after UV (shown previously), at induced DSBs, and other places not directly at the replication fork. Here mutants of different replication factors are used that uncouple the replisome and induce SOS to a high degree.
The third project determines the factors necessary for loading RecA filaments at the replication fork versus other locations on the chromosome when SOS is induced in the absence of damage, and helps elucidate further mechanisms for induction of SOS at these substrates. It is shown that the sbcB and recJ exonucleases assist in inappropriate RecA filament formation by substrate processing exclusively at replication forks, but not other substrates, likely through mechanisms that are reliant on the activities of the RecA loading factors RecBCD and RecFOR.
|
4 |
Molecular mechanisms of the pressure-activation of Mrr, a Type IV restriction endonuclease, and induction of SOS response in Escherichia coli / Mécanismes moléculaires de l'activation par pression de Mrr, une enzyme de restriction de Type IV, et de l'induction d'une réponse SOS chez Escherichia coliBourges, Anaïs 28 September 2018 (has links)
La pression rencontrée par les organismes sur Terre varie de la pression atmosphérique à 110 MPa atteinte dans la fosse la plus profonde de l'océan. Même si Escherichia. coli n’est pas naturellement résistante à la pression, elle capable d'acquérir une résistance et même supporter un choc de pression de 2 GPa (~20 000 atm). L'une des réponses intéressantes d’E. coli à un choc sous létal de pression (100 MPa) est l'induction d'une réponse SOS dépendante de RecA due à des lésions double brins de l’ADN. La pression elle-même n'est pas capable de compromettre l'intégrité covalente de l'ADN. Des criblages ont permis d’isoler des souches d’E. coli résistantes à la pression qui révèlent qu'une endonucléase de restriction (ER) de type IV, Mrr, est le seul facteur responsable du clivage de l'ADN. Cette enzyme cible uniquement l'ADN méthylé et l’expression d’une MTase étrangère, M.HhaII, est également capable d'induire une réponse SOS dans des souches de E. coli en présence de Mrr. Ici, nous démontrons en utilisant des techniques de fluctuations d’intensité de fluorescence, in vivo et in vitro que Mrr est un présent sous la forme d’un tétramère dans les cellules non stressées. La pression est capable de dissocier Mrr en dimères actifs qui peuvent lier l'ADN et cliver à certains sites cryptiques. En revanche, la MTase HhaII favorise la forme dimeric de Mrr liée à l’ADN en raison de la méthylation de nombreux sites de haute affinité. Une analyse mutationnelle et un modèle d’homologie 3D de la protéine entière révèle la base structurelle probable du changement entre la forme tétramérique inactive à la forme dimérique active. Nous avons mis en pace un système permettant de faire de la microscopie sous pression (in vitro and in vivo) et nos résultats préliminaires ont confirmé notre modèle d’activation de Mrr. / The pressure encountered by organisms on Earth varies from the atmospheric pressure to 110 MPa as reached in the deepest trench of the ocean. Although Escherichia coli is not naturally resistant to high pressure, it is capable of acquiring pressure resistance and withstanding a pressure shock up to 2 GPa (~20,000 atm). When exposed to a sub-lethal pressure shock (100 MPa) E. coli induces a RecA-dependent SOS response due to DNA double strand breaks. Pressure itself is not capable of compromising the covalent integrity of the DNA. Instead, screens for pressure-resistance E. coli mutants have revealed that a Type IV restriction endonuclease, Mrr is the only factor responsible for DNA cleavage. This enzymes targets only methylated DNA and expression of a foreign methyltransferase, M.HhaII, is also capable of inducing an SOS response in strains harboring Mrr. Here, we demonstrate using fluorescence fluctuation techniques in vivo and in vitro that Mrr is present as a tetramer in unstressed cells and that pressure dissociates Mrr into active dimers that can bind DNA and cleave at some cryptic sites. In contrast, the M.HhaII MTase pulls the Mrr tetramer-dimer equilibrium to the dimer-bound DNA form probably due to the methylation of many high-affinity sites. Mutational analysis associated with a 3D homology model of the full-length protein reveals the probable structural basis for the switch from an inactive tetramer to an active dimer. We set up a system that allows microscopy experiments (in vitro and in vivo) under pressure and preliminary results have confirmed our model of Mrr activation.
|
5 |
BIOFILMS: A DEVELOPMENTAL NICHE FOR VANCOMYCIN-INTERMEDIATE RESISTANT STAPHYLOCOCCUS AUREUSChapman, Jenelle 01 August 2017 (has links)
The glycopeptide vancomycin is commonly used to treat a variety of bacterial infections, especially multi-drug resistant species of bacteria such as Staphylococcus aureus. While vancomycin remains an effective treatment for Staphylococcal infections, strains of vancomycin-intermediate Staphylococcus aureus (VISA) and vancomycin-resistant Staphylococcus aureus (VRSA) strains have emerged. One mechanism for the increased antibiotic (vancomycin-intermediate) resistance is due to acquisition of various mutations within different genes that alter the cell wall physiology making vancomycin ineffective. Biofilm development is a bacterial mode of growth that can lead to mutations within the bacterial genome and allow for advantageous traits such as increased antibiotic resistance. The biofilm environment can be harsh, having niches that are often nutrient and oxygen deficient, leading to damaged DNA. This DNA damage induces the SOS response to repair double-stranded breaks in DNA, and enables bacterial survival. However, DNA repair via the SOS response is an error-prone system that often results in mutations within the genome. We hypothesize that the acquisition of vancomycin intermediate resistance is an unintended consequence within the S. aureus biofilm environment. To assess the hypothesis, both wildtype and RecA/LexA deficient biofilms were grown in microtiter assays with and without the addition of sub-inhibitory concentrations of vancomycin. Efficiency of plating techniques were used to quantify the subpopulation of biofilm-derived S. aureus cells that developed vancomycin intermediate resistance. Microtiter assays and efficiency of plating techniques were repeated using multiple strains of S. aureus. Experimentation was repeated by comparing the subpopulation of biofilm-derived and planktonic culture cells that grew in intermediate-concentrations of vancomycin with three additional strains of S. aureus. Mutagenesis that occurs within the biofilm environment was further assessed by plating both biofilm-derived and planktonic culture cells on sheep blood agar and tryptic soy agar supplemented with streptomycin, novobiocin, or rifampicin, and quantifying the non-hemolytic variants that grew on blood agar, or the number of colonies that grew in the presence of an antibiotic, respectively. The biofilm results were then compared to the results from wildtype and RecA/LexA deficient planktonic cultures and used to determine the impact of the S. aureus biofilm environment in the acquisition of vancomycin intermediate resistance. The results indicate that a larger subpopulation of cells derived from wildtype biofilms grew in increased concentrations of vancomycin (4 µg/ml) as compared to the planktonic counterpart. The subpopulation of cells derived from wildtype biofilms was also higher than all subpopulations of RecA/LexA deficient biofilm and planktonic cultures. Further experimentation indicates that this phenomenon may not be specific to all strain backgrounds of S. aureus. Additionally, growth with sub-inhibitory concentrations of vancomycin did not exhibit an exaggerated subpopulation of cells in biofilm environments or planktonic cultures that could grow in intermediate-concentrations of vancomycin, however standard antibiotic testing suggests that the mechanism by which point mutations occur in planktonic conditions may be mediated by the RecA and SOS response system. Bacteria that live in a biofilm community are often subjected to harsh environments. In order to survive, the SOS response system will be activated to repair damaged DNA. This error prone process will result in mutational changes and increased genetic diversity. The VISA phenotype may be a result of the diversity that occurs within the biofilm environment. While the VISA phenotype would be an unintended consequence of genetic diversity and gene transfer in the biofilm setting, it demonstrates that mutations that occur within the biofilm environment allow for S. aureus to better adapt to new environments, including the presence of widely used antibiotics such as vancomycin.
|
6 |
ClpXP-regulated Proteins Suppress Requirement for RecA in Dam Mutants of Escherichia coli K-12Savakis, Amie 25 October 2018 (has links)
Double strand breaks (DSB) are a common source of DNA damage in both prokaryotes and eukaryotes. If they are not repaired or are repaired incorrectly, they can lead to cell death (bacteria) or cancer (humans). In Escherichia coli, repair of DSB are typically accomplished via homologous recombination and mediated by RecA. This repair pathway, among others, is associated with activation of the SOS response. DNA adenine methyltransferase (dam) mutants have an increased number of DSB and, therefore, are notorious for being RecA-dependent for viability. Here, we show that the synthetic lethality of Δdam/ΔrecA is suppressed when clpP is removed, suggesting that there is a protein, normally degraded by ClpXP, which is preventing DSB from occurring.
|
7 |
Chemical Interrogation Of Sporulation And Cell Division In StreptomycesJani, Charul January 2015 (has links)
Cell division is essential for spore formation but not for viability in the filamentous
streptomycetes bacteria. Failure to complete cell division instead blocks spore formation,
a phenotype that can be visualized by the absence of gray (in Streptomyces coelicolor)
and green (in Streptomyces venezuelae) spore-associated pigmentation. The
streptomycetes divisome is however, similar to that of other prokaryotes.
We hypothesized chemical inhibitors of sporulation in model streptomycetes might
interfere with cell division in rod shaped bacteria. To test this, we investigated 196
compounds that inhibit sporulation in Streptomyces coelicolor. We show that 19 of these
compounds cause filamentous growth in Bacillus subtilis, consistent with impaired cell
division. One of the compounds is a DNA damaging agent and inhibits cell division by
activating the SOS response. The remaining 18 act independently of known stress
responses and may therefore act on the divisome or on divisome positioning and stability.
Three of the compounds (Fil-1, 2 and 3) confer distinct cell division defects on B.
subtilis. They also block B. subtilis sporulation, which is mechanistically unrelated to the
sporulation pathway of streptomycetes but which is also dependent on the divisome. We
discuss ways in which these differing phenotypes can be used in screens for cell division
inhibitors.
In addition to the molecules affecting the divisome, DNA and cell wall damage also
affects the process indirectly by temporarily halting the cell division. To further explore
the cell division regulation in stressful conditions, we carried the complete transcriptomic analysis of S. venezuelae after the DNA damage. The observed changes in the gene
expression as a result of the DNA damage paves the way for identification of the DNAdamage
induced cell division inhibitor in streptomycetes. / Thesis / Doctor of Philosophy (PhD)
|
8 |
Maintien des prophages dans les génomes d' entérobactéries / Prophage maintenance into enterobacterial genomesMenouni, Rachid 28 March 2014 (has links)
Les bactériophages sont les virus spécifiques des bactéries. Ils sont considérés comme les entités biologiques les plus abondantes de la biosphère (1031 au total). Une grande partie des bactériophages sont dits tempérés de part leur propriété à intégrer leur génome dans celui de leur hôte et à s'y maintenir en état de réplication passive appelé lysogénie. Les gènes de prophages apportent de nouvelles propriétés à l'hôte via la conversion lysogénique. De nombreux prophages défectifs et fonctionnels sont maintenus dans les génomes bactériens. Nous avons émis l'hypothèse que des stratégies de maintien aient été sélectionnées pour maintenir cette source de gènes, même si elle est potentiellement dangereuse car les prophages peuvent être induits dans des conditions de stress.Nos résultats suggèrent que le maintien de la lysogénie d'une catégorie de prophages, qui présente une organisation génétique atypique du module de recombinaison spécifique de site, est sous le contrôle du facteur de terminaison de la transcription Rho. Pour ces prophages, qu'ils soient défectifs ou fonctionnels, leur induction par inactivation de Rho, fait intervenir une nouvelle voie d'induction lytique indépendante de la voie classique via la réponse SOS.Ces interactions hôtes-virus reflète la coévolution de ces microorganismes, qui permet l'acquisition de gènes via le transfert horizontal tout en contrôlant l'expression des gènes délétères. Ceci permet l'acquisition de nouvelles propriétés et l'adaptation de l'hôte à différentes conditions environnementales. / Bacteriophages are the most abundant biological entities in the biosphere. A majority of them are temperate phages that are able to integrate their genome into the host and replicate passively in a lysogenic state. Hosts frequently benefit from such massive gene acquisition through lysogenic conversion. As prophages may be beneficial to their hosts, we hypothesize that hosts adapted strategies for maintaining that gene source. Since prophages integrate into and excise from the host chromosome through site-specific recombination (SSR), we investigated whether regulation of SSR at the level of gene expression could be involved in the maintenance process. Our results suggest that lysogeny maintenance of a class of prophages, which all share a same unusual genetic organization, are controlled by the transcription termination factor Rho. Rho is not only involved in horizontally acquired gene silencing but also in prophage maintenance, which can be seen as an adaptation of the host to maintain prophage genes. For these prophages, whether defective or functional, their induction by the inactivation of Rho, involves a new pathway of lysogeny escape, which is independent of the classical pathway via the SOS response. This newly characterized interaction reflects the coevolution of host and viruses, which allows the acquisition of genes, and thus new properties, via horizontal transfer, while controlling the expression of deleterious genes.
|
9 |
Papel da resposta SOS no reparo de danos induzidos por mitomicina C e na resposta aos antibióticos beta-lactâmicos em Caulobacter crescentus. / Role of the SOS response in the repair of damage induced by mitomycin C and in the response to beta-lactams in Caulobacter crescentus.Kulishev, Carina Oliveira Lopes 22 April 2014 (has links)
O sistema SOS controla a expressão de diversos genes, muitos envolvidos com o reparo de DNA. Caulobacter crescentus vem emergindo como um modelo alternativo interessante para o estudo de mecanismos de reparo de DNA. Temos como objetivos realizar uma análise funcional de genes de função desconhecida regulados por SOS, e investigar a indução de SOS por antibióticos beta-lactâmicos em C. crescentus. Análises funcionais dos genes CC_3424 e CC_3467 mostraram que deleções nestes genes resultam em fenótipo de sensibilidade à mitomicina C (MMC). CC_3424 possui similaridade com glioxalases e CC_3467 com endonucleases. Acreditamos que CC_3467 atue no reparo de ligações intercadeia no DNA, e que CC_3424 atue detoxificando a MMC das células. Estudos dos efeitos biológicos da indução do sistema SOS mostram que a cefalexina (CFE) induz este regulon em concentrações subinibitórias. Células tratadas com CFE apresentam mais danos oxidativos do tipo 8-oxoguanina. Estes resultados mostram que concentrações subinibitórias de CFE resultam em estresse oxidativo em C. crescentus. / The SOS response controls the expression of several genes, many of which are involved in DNA repair mechanisms. Caulobacter crescentus has emerged as an alternative bacterial model for DNA repair. As aims, we will undertake a functional analysis of some of the genes regulated by the SOS response, and will investigate the SOS induction by beta-lactam antibiotics in C. crescentus. Functional analysis of the genes CC_3424 and CC_3467 showed that deletions in these genes result in a phenotype of sensitivity to mitomycin C (MMC). CC_3424 has similarity to glyoxalase and CC_3467 to endonucleases. We believe that the CC_3467 gene plays a role in the repair of interstrand crosslinks in the DNA, while CC_3424 acts in MMC cellular detoxification. Studies of biological effects of SOS induction showed that subinibitory concentrations of cephalexin (CFE) induce the SOS regulon. Cells treated with CFE have higher concentrations of 8-oxoG oxidative damage. These results show that subinibitory concentrations of cephalexin leads to cellular oxidative stress in C. crescentus.
|
10 |
Papel dos mecanismos de reparo de DNA na resposta de Pseudomonas aeruginosa aos antimicrobianos Cirprofloxacina e Ceftazidima. / Role of DNA repair mechanisms in the response of Pseudomonas aeruginosa to the antimicrobials Ciprofloxacin and Ceftazidime.Migliorini, Letícia Busato 17 October 2017 (has links)
Pseudomonas aeruginosa é um patógeno humano que tem preocupado a comunidade científica pelo aumento da resistência antimicrobiana. Os efeitos provocados pelos antimicrobianos podem levar à ativação de respostas mutagênicas que regulam polimerases de baixa fidelidade, atuando na Síntese Translesão de DNA (TLS). Neste trabalho, avaliamos a resposta de P. aeruginosa frente à Ceftazidima e Ciprofloxacina. Foi observado que Ceftazidima não induz a resposta SOS e mutagênese, diferentemente de Ciprofloxacina. Demonstramos que as três polimerases de TLS estão envolvidas na mutagênese induzida por Ciprofloxacina e peróxido de hidrogênio. Também, observamos que a perda de qualquer uma das polimerases alterou significativamente o espectro de mutações espontâneas e induzidas por Ciprofloxacina e que possuem funções redundantes neste processo mutagênico. Assim, demonstramos que as polimerases de TLS são importantes para a mutagênese induzida por Ciprofloxacina em P. aeruginosa, e podem estar implicadas na mutagênese adaptativa e, consequentemente, na resistência bacteriana. / Pseudomonas aeruginosa is a human pathogen that has worried the scientific community by increasing antimicrobial resistance. The effects caused by the antimicrobial agents may lead to the activation of mutagenic responses that regulate low fidelity polymerases, acting in DNA Transmission Synthesis (TLS). In this work, we evaluated the response of P. aeruginosa to Ceftazidime and Ciprofloxacin. It has been observed that Ceftazidime does not induce the SOS response nor mutagenesis, unlike Ciprofloxacin. We show that the three TLS polymerases are involved in the mutagenesis induced by Ciprofloxacin and hydrogen peroxide. Also, we observed that the loss of any of the polymerases significantly altered the spectrum of spontaneous mutations induced by Ciprofloxacin and that have redundant functions in this mutagenic process. Thus, we have shown that TLS polymerases are important for Ciprofloxacin-induced mutagenesis in P. aeruginosa, and may be implicated in adaptive mutagenesis and consequently bacterial resistance.
|
Page generated in 0.032 seconds