• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 42
  • 42
  • 10
  • 9
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Detection of in-plane stress waves with Polyvinylidene Fluoride (PVDF) sensors

Kotian, Kunal 21 May 2013 (has links)
No description available.
32

Representative testing of personal protection equipment

Walker, P. J. January 2014 (has links)
The purpose of the work reported within this thesis was to design and implement a series of tests which better replicate the impact conditions experienced during a game, and allow for quantitative measurements of performance of various items of personal protection equipment (PPE). The sports of cricket and taekwondo were used as case studies. The aim was to improve on existing testing protocols making them more representative of real life, an approach that has not been previously attempted in the literature and so required design of multiple items of novel equipment. A representative cricket impact test was developed utilizing a ball canon firing a cricket ball mass at an equivalent bowling velocity of 31 m/s (70 mph) and a novel, freely suspended force acquisition system with embedded accelerometers from which the transmitted force values could be derived. Throughout the testing secondary variables of coefficient of restitution (COR), deformation and contact time were measured from high speed video footage to give further insight into the impact mechanics of the three tested leg guards. Contact times were in the range of 3 ms - 4 ms, COR between 0.38 - 0.50 and deformation between 45 mm - 52 mm. These results were compared against other benchmark tests to establish how close the representative test was to an actual human related ball-pad impact and to estimate human tolerance levels to impact. A rig to mimic a human on human kicking impact in taekwondo was designed to measure performance of the piece of body protection equipment used in training and competition, commonly referred to as a hogu. Primarily a mechanical simulator was designed to replicate the speed and mass of a human leg impacting during a roundhouse kick. A force acquisition system was manufactured, capable of integrating with the kicking robot functioning, with a human torso sized and shaped anvil, using a similar accelerometer based system of force measurement as that introduced in the cricket testing. This test was then used to measure performance levels of nine off-the-shelf hogus and protective training pads. Using transmitted peak force and time to peak force (TTPF) as indicators of protection, these values were found to range from between 0.5 kN 7.5 kN and 9 ms - 23 ms across the pads indicating a major difference in the protection provided.
33

Tenacidade à fratura translaminar dinâmica de um laminado híbrido metal-fibra titânio-grafite de grau aeronáutico / Dynamic translaminar fracture toughness of aeronautical grade titanium-graphite hybrid fiber-metal laminate

Gatti, Maria Cristina Adami 09 October 2009 (has links)
Diversos critérios de tenacidade à fratura translaminar dinâmica foram determinados para o laminado híbrido metal-fibra TiGra, empregando-se conceitos e metodologias da Mecânica da Fratura Elástica Linear MFEL (fator-K) e da Mecânica da Fratura Elasto-Plástica MFEP (integral-J). Verificou-se que as tenacidades de iniciação elasto-plástica, Jid, e de carga máxima, Jmd, do TiGra são controladas pelo desenvolvimento, ou supressão de delaminações. Os resultados indicaram que o emprego deste material se justifica mais pela sua resistência à propagação de danos (caracterizada por Jmd) do que à iniciação da fratura dinâmica (por Jid). De modo geral, os requisitos de validade de Jid como verdadeira propriedade do material (JId) foram satisfeitos, embora para Jmd boa parte das restrições quanto ao tamanho mínimo do corpo-de-prova tenha sido violada. Mais freqüentemente, velocidades mais rápidas de impacto beneficiaram as tenacidades-J do TiGra, enquanto que temperaturas mais elevadas afetaram negativamente estas propriedades. Quanto à MFEL, a tenacidade KJd do TiGra foi beneficiada pelo incremento na taxa de carregamento sob temperaturas mais elevadas, enquanto que a tenacidade Kid foi negativamente afetada pela taxa de deformação em todas as temperaturas avaliadas. Temperaturas mais altas também degradaram as propriedades de tenacidade-K do TiGra. Em oposição às tenacidades-J, os critérios KJd e Kid não satisfizeram em absoluto os mais exigentes critérios de contenção de plasticidade estabelecidos pela MFEL, se comparados aos propostos pela MFEP. Por fim, o desempenho mecânico do laminado TiGra foi severamente comprometido quando do cômputo da densidade específica para a determinação das tenacidades J e K por unidade de massa, sendo nesta ocasião o laminado híbrido facilmente superado por vários laminados convencionais da classe dos Carbono-Epóxi. / Several dynamic translaminar fracture toughness criteria have been determined for TiGr hybrid fiber-metal laminate through Linear Elastic (K-factor) and Elastic-Plastic (J-integral) Fracture Mechanics (LEFM and EPFM, respectively) concepts and methodologies. Instrumented Charpy impact testing was carried out over a wide range of temperatures under two loading rates. It has been discovered that the elastic-plastic initiation toughness, Jid, and the toughness at maximum load, Jmd, of TiGr are controlled by either delamination favoring or suppression. Impact tests revealed that the in-service use of TiGr must rely on its resistance to dynamic fracture propagation (as characterized by Jmd) rather than on fracture initiation (by Jid). In a broad sense, the requirements for Jid data validity as a material property (JId) were fulfilled, whereas many restrictive demands in regard to the minimum testpiece size were violated by the Jmd criterion. Generally, higher impact velocities were beneficial to TiGrs J-toughnesses, inasmuch as higher temperatures impaired these properties. Regarding the LEFM approach, KJd toughness of TiGr laminate was imparted by faster impacts at higher temperatures, whilst the strain rate negatively influenced the Kid toughness over the whole temperature range tested. Higher temperatures also degraded the K-toughness properties of TiGr hybrid laminate. Differently from J-toughnesses values, the KJd e Kid criteria did not satisfy at all the more stringent criteria set forth by the LEFM approach with regard to plastic constraint, as compared to those established by EPFM. Finally, the mechanical performance of TiGr laminate was overwhelmingly compromised as the materials specific gravity was taken in account to obtain K and J toughness values by unit weight, so that TiGr was by far exceeded in this regard by conventional Carbon/Epoxy composite laminates.
34

Simulation numérique du procédé de rétreint : application à la fabrication des bielles aéronautiques en aluminium 2024 et TA6V / Numerical simulation of swaging process : application to titanium, stainless steel and nickel based alloys forging

Gueye, Babacar 05 July 2011 (has links)
Le procédé de rétreint fait partie de la famille des techniques de mise en forme sans enlèvement de matière. La déformation du lopin est obtenue par chocs successifs d'un ensemble de matrices disposées autour de la pièce. Ce procédé est généralement utilisé pour la réduction de section de tubes ou de barres. Dans un contexte industriel, la maîtrise des paramètres procédé et la compréhension des phénomènes sous-jacents est indispensable pour non seulement limiter le temps de développement de nouveaux produits mais aussi diminuer le nombre de rebus des références qui posent problème. L'objectif de la thèse est de répondre à ces attentes en exploitant les possibilités offertes par la simulation numérique. Dans un premier temps, les alliages étudiés ont été caractérisés mécaniquement. En effet grâce à des essais de traction et d'impact de Taylor et à l'emploi d'une méthode d'identification par analyse inverse, les paramètres de la loi d'écoulement de Johnson-Cook ont été déterminés. Dès lors différents modèles, utilisant le code Abaqus/Explicit, ont été mis en place (du 2D axisymétrique au 3D en passant des modèles en reprenant que le quart de la pièce) et la validation s'est faite grâce à des campagnes d'essais réalisés sur site. Enfin, un progiciel développé en C++ sera livré à l'industrie. Il intègre différentes fonctionnalités comme la prédiction des efforts de forge par calcul analytique. Tous ces outils numériques et analytiques ont permis de mieux comprendre le procédé en termes de chemin d'écoulement de la matière, de distribution des contraintes et déformations et de profil d'évolution d'évolution de l'effort tout au long de la mise en forme. ABSTRACT : The shrinking process is part of the family of formatting techniques without removing material. / The shrinking process is part of the family of formatting techniques without removing material.
35

Tenacidade à fratura translaminar dinâmica de um laminado híbrido metal-fibra titânio-grafite de grau aeronáutico / Dynamic translaminar fracture toughness of aeronautical grade titanium-graphite hybrid fiber-metal laminate

Maria Cristina Adami Gatti 09 October 2009 (has links)
Diversos critérios de tenacidade à fratura translaminar dinâmica foram determinados para o laminado híbrido metal-fibra TiGra, empregando-se conceitos e metodologias da Mecânica da Fratura Elástica Linear MFEL (fator-K) e da Mecânica da Fratura Elasto-Plástica MFEP (integral-J). Verificou-se que as tenacidades de iniciação elasto-plástica, Jid, e de carga máxima, Jmd, do TiGra são controladas pelo desenvolvimento, ou supressão de delaminações. Os resultados indicaram que o emprego deste material se justifica mais pela sua resistência à propagação de danos (caracterizada por Jmd) do que à iniciação da fratura dinâmica (por Jid). De modo geral, os requisitos de validade de Jid como verdadeira propriedade do material (JId) foram satisfeitos, embora para Jmd boa parte das restrições quanto ao tamanho mínimo do corpo-de-prova tenha sido violada. Mais freqüentemente, velocidades mais rápidas de impacto beneficiaram as tenacidades-J do TiGra, enquanto que temperaturas mais elevadas afetaram negativamente estas propriedades. Quanto à MFEL, a tenacidade KJd do TiGra foi beneficiada pelo incremento na taxa de carregamento sob temperaturas mais elevadas, enquanto que a tenacidade Kid foi negativamente afetada pela taxa de deformação em todas as temperaturas avaliadas. Temperaturas mais altas também degradaram as propriedades de tenacidade-K do TiGra. Em oposição às tenacidades-J, os critérios KJd e Kid não satisfizeram em absoluto os mais exigentes critérios de contenção de plasticidade estabelecidos pela MFEL, se comparados aos propostos pela MFEP. Por fim, o desempenho mecânico do laminado TiGra foi severamente comprometido quando do cômputo da densidade específica para a determinação das tenacidades J e K por unidade de massa, sendo nesta ocasião o laminado híbrido facilmente superado por vários laminados convencionais da classe dos Carbono-Epóxi. / Several dynamic translaminar fracture toughness criteria have been determined for TiGr hybrid fiber-metal laminate through Linear Elastic (K-factor) and Elastic-Plastic (J-integral) Fracture Mechanics (LEFM and EPFM, respectively) concepts and methodologies. Instrumented Charpy impact testing was carried out over a wide range of temperatures under two loading rates. It has been discovered that the elastic-plastic initiation toughness, Jid, and the toughness at maximum load, Jmd, of TiGr are controlled by either delamination favoring or suppression. Impact tests revealed that the in-service use of TiGr must rely on its resistance to dynamic fracture propagation (as characterized by Jmd) rather than on fracture initiation (by Jid). In a broad sense, the requirements for Jid data validity as a material property (JId) were fulfilled, whereas many restrictive demands in regard to the minimum testpiece size were violated by the Jmd criterion. Generally, higher impact velocities were beneficial to TiGrs J-toughnesses, inasmuch as higher temperatures impaired these properties. Regarding the LEFM approach, KJd toughness of TiGr laminate was imparted by faster impacts at higher temperatures, whilst the strain rate negatively influenced the Kid toughness over the whole temperature range tested. Higher temperatures also degraded the K-toughness properties of TiGr hybrid laminate. Differently from J-toughnesses values, the KJd e Kid criteria did not satisfy at all the more stringent criteria set forth by the LEFM approach with regard to plastic constraint, as compared to those established by EPFM. Finally, the mechanical performance of TiGr laminate was overwhelmingly compromised as the materials specific gravity was taken in account to obtain K and J toughness values by unit weight, so that TiGr was by far exceeded in this regard by conventional Carbon/Epoxy composite laminates.
36

Design of an American Football Helmet Liner for Concussion Mitigation

Rush, Gustavus Alston 12 August 2016 (has links)
The objective of this research was to develop an optimal design for a polymeric American football helmet liner for concussion prevention utilizing experiments and high performance. Along with well-established injury criteria (HIC, SI, and Peak acceleration), localized brain injury mechanisms were explored by employing Finite Element simulations and experimental validation. Varying strain rate experiments (monotonic and hysteresis) were conducted on modern football helmet (Rush, Rawlings, Riddell, Schutt, and Xenith) liners and new possible polymeric foam liner materials. These experiments were used to characterize each material at low strain rates (0.1/sec; Instron), intermediate strain rates (100-120/sec; NOCSAE drop tower) and high strain rates (600-1000/sec; Split Hopkinson Pressure Bar). Experimental design optimization was performed on a football helmet liner by utilizing an exploratory Design of Experiments by National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop tests. FEA simulations of drop impact tests were conducted on a helmeted NOCSAE headform model and a helmeted human head model. Correlations were made between both models to relate localized brain response to the global acceleration and the dynamic-based injury criteria HIC, SI, and Peak acceleration). FEA simulations were experimentally validated by twin-wire drop tests of the NOCSAE headform using correlations for validation of the human head model. The helmeted human head simulations were used to explore a Mild Traumatic Brain Injury (MTBI) limits based localized brain response (e.g. pressure and impulse). Based on these limits, future FEA simulations will be used to explore these limits as helmet liner design criteria.
37

High-Strain Rate Spall Strength Measurement of a CoCrFeMnNi High-Entropy Alloy

Andrew J Ehler (14052888) 03 November 2022 (has links)
<p>  </p> <p>This work explored the dynamic behavior and failure mechanisms of an additively manufactured high-entropy alloy (HEA) when subjected to high-strain rate shock impacts. A laser-induced projectile impact testing (LIPIT) setup was used to study the dynamic behavior of the Cantor alloy CoCrFeMnNi samples manufactured using a directed-energy deposition technique. HEA flyers were accelerated by a pulse laser to velocities up to 1 km/s prior to impact with lithium fluoride glass windows. A photon Doppler velocimetry (PDV) system recorded the velocity of the flyer during the acceleration and subsequent impact. From this velocity profile, the Hugoniot coefficient and sound speed of the HEA samples were determined.</p> <p><br></p> <p>Upon determination of key shock parameters, spallation occurring due to shock was analyzed. Using the same LIPIT and PDV systems as the earlier testing, aluminum flyers of various thicknesses were accelerated into HEA samples. The back-surface velocity profiles of the HEA samples showed a characteristic “pullback” caused by the interaction of the tensile stress waves indicative of spall occurrence in the material. The magnitude of this pullback and the material properties determined in the first experiments allow for the measurement of spall strength at various strain-rates. This data is compared to previous data looking at similar HEAs manufactured using traditional methods. A comparison of this data showed that the spall strength of the HEA samples was equivalent to that of similar alloys but at significantly higher strain rates. As an increased strain-rate tends to result in increased spall strengths, further examination was needed to determine the reasons for this decreased spall strength in the AM samples.</p> <p><br></p> <p>Post-shock specimen recovery allowed for the failure mechanisms behind the spallation to be observed. Scanning electron microscope (SEM) images of the cross-section of the samples showed ductile fracture and void growth outside of the predicted spall region. Further imaging using energy dispersive spectroscopy (EDS) showed the presence of potentially chromium-oxide deposits in regions outside of the predicted spall plane. It is hypothesized that these regions created nucleation points about which spallation occurred. Thus, to achieve spall strength in AM HEAs equivalent to strengths in traditionally-casted alloys, the AM sample must be refined to reduce the occurrence of these deposits and voids.  </p>
38

HEDGEMON: A HEDGEHOG-INSPIRED HELMET LINER

Swift, Nathan Butler, IV 01 June 2016 (has links)
No description available.
39

Visualisation and quantification of the defects in glass-fibre reinforced polymer composite materials using electronic speckle pattern interferometry

Zhang, Zhong Yi January 1999 (has links)
Non-destructive testing (NDT) of glass-fibre reinforced polyester (GRP) composite materials has been becoming increasingly important due to their wide applications in engineering components and structures. Electronic Speckle Pattern Interferometry (ESPI) has promising potential in this context because it is a non-contact, whole-field and real-time measurement system. This potential has never been fully exploited and there is only limited knowledge and understanding available in this area. This reality constrains the wide popularity and acceptance of ESPI as a novel NDT technique. Therefore it is of considerable importance to develop an understanding of the capability of ESPI with respect to damage evaluation in GRP composite materials. The research described in this thesis is concerned with an investigation into the applicability of ESPI in the NDT of GRP composite materials. Firstly, a study was carried out to determine excitation techniques in terms of practicality and effectiveness in the ESPI system. Three categories of defects were artificially introduced in GRP composite materials, namely holes, cracks and delaminations each with different geometrical features. ESPI was then employed to evaluate the three kinds of defects individually. It has been found that cracks and holes on back surfaces can be defined when the technique is used in conjunction with thermal excitation. Internal Temperature Differential (ITD) induced fringe patterns were more efficient than External Thermal Source (ETS) induced fringe patterns with regard to detecting the presence of holes and cracks. In the case of delamination, ESPI was found to be capable of detecting the damage when used in combination with mechanical excitation originating from a force transducer hammer. The geometrical features and magnitudes of delaminations were also established as being quantifiable. The validation of ESPI as an NDT technique was carried out in an attempt to establish a better understanding of its suitability and have more confidence in its applications. Four damaged specimens were Subjected to ESPI examination in conjunction with visual inspection, ultrasonic C-scan and sectioning techniques. The geometrical features and magnitudes of damage evaluated using ESPI showed a good correlation with those evaluated by conventional techniques. Poor visibility and readability is an inherent problem associated with ESP! due to an overlapping between the noise and signal frequencies. An improvement of image quality is expected in an attempt to achieve a wide acceptance of ESPI as a novel NDT technique. It has also been demonstrated that this problem can be tackled using optical phase stepping techniques in which optical phase data can be extracted from the intensity fringes. A three-frame optical phase stepping technique was employed to produce the "wrapped" and "unwrapped" phase maps which are capable of indicating internal damage with high visibility and clarity. Finally ESPI was practically employed to evaluate damage in GRP composites introduced by quasi-static and dynamic mechanical loading. It was found that ESP! was capable of monitoring the progressive damage development of specimens subjected to incremental flexural loading. The initial elastic response, damage initiation, propagation and ultimate failure of specimens were clearly characterised by the abnormal fringe pattern variations. In a similar manner, ESPI was employed to evaluate the low velocity falling weight impact induced damage. A correlation was established between the magnitude of damage and the impact event parameters as well as the residual flexural properties.
40

Simulation and Physical Implementation of a Test Rig for Realistic Hail Impact Testing / Simulering och fysisk implementering av en stöttestningsrigg för realistiskt hagel

HERMANSSON, HANNA, WINQUIST DE VAL, ALMIDA January 2021 (has links)
Hail storms, with hail commonly near 50 mm in diameter that travel with storm wind sabove 25 m/s, cause damages of a large magnitude throughout the globe, with places like USA, Australia and India suffering the greatest. These damages have serious consequences, not least telecommunication products mounted in exposed places. Hail robustness is therefore important to test throughout a product development process, to reduce faulty products and maintenance costs. This thesis includes test rig concepts for hail impact testing and focuses on one final concept. The thesis includes a simulation model of the hail impact test rig, together with a physical implementation of the rig for comparison and validation. Additional experiments and statistical analysis is included to conclude on the accuracy and consistency with respect to realistic hail cases. The result shows that the simulation corresponds to the test rig. This physical implementation of the test rig is consistent and accurate for average sized hail projectiles, however varies more for hail projectiles corresponding to more severe storms. / Hagelstormar, med hagel omkring 50 mm i diameter och en vindhastighet på over 25 m/s, orsakar stora skador över hela världen, där USA, Australien och Indien är några av de mest utsatta platserna. Skadorna har stor påverkan, inte minst telecomprodukterna som är monterade på utsatta platser. Därav är det viktigt att testa produkter mot hagelkollisioner under produktutvecklingsprocessen, för att reducera antalet skadade produkter och kostnader. Detta examensarbete innehåller olika koncept på testriggar som simulerar hagel, med fokus på ett slutgiltigt koncept. Rapporten innehåller en simuleringsmodell av testriggen, samt en fysisk implementering av den för jämförelse och validering. Ytterliggare experiment och statistisk analys innefattas för att kunna dra slutsatser om riggens nogrannhetoch konsekventhet i föhållande till realistiska hagelstormar. Resultatet visar att simuleringen motsvarar testriggens beteende, vilket är önskvärt. Den fysiska implementationen av riggen ger ett noggrant och konsekvent resultat för medelstora hagelprojektiler, däremot fås större variationer för hagelprojektiler som förekommer i  starkare stormar.

Page generated in 0.0669 seconds