• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 32
  • 32
  • 18
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

HELIUM (e, 2e) COPLANAR AND OUT-OF-PLANE EXPERIMENTS

deHarak, Bruno A. 01 January 2007 (has links)
The detection of sound sources with microphone arrays can be enhanced through processing individual microphone signals prior to the delay and sum operation. One method in particular, the Phase Transform (PHAT) has demonstrated improvement in sound source location images, especially in reverberant and noisy environments. Recent work proposed a modification to the PHAT transform that allows varying degrees of spectral whitening through a single parameter, andamp;acirc;, which has shown positive improvement in target detection in simulation results. This work focuses on experimental evaluation of the modified SRP-PHAT algorithm. Performance results are computed from actual experimental setup of an 8-element perimeter array with a receiver operating characteristic (ROC) analysis for detecting sound sources. The results verified simulation results of PHAT- andamp;acirc; in improving target detection probabilities. The ROC analysis demonstrated the relationships between various target types (narrowband and broadband), room reverberation levels (high and low) and noise levels (different SNR) with respect to optimal andamp;acirc;. Results from experiment strongly agree with those of simulations on the effect of PHAT in significantly improving detection performance for narrowband and broadband signals especially at low SNR and in the presence of high levels of reverberation.
12

Interference effects due to projective-target nucleus scattering in single ionization of molecular hydrogen by 75 keV proton impact

Alexander, Jason S. January 2009 (has links) (PDF)
Thesis (Ph. D.)--Missouri University of Science and Technology, 2009. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 27, 2009) Includes bibliographical references (p. 70-74).
13

K-, L-, and M-Shell X-Ray Production Cross Sections for Beryllium, Aluminum and Argon Ions Incident Upon Selected Elements

Price, Jack Lewis 12 1900 (has links)
Incident 0.5 to 2.5 MeV charged particle beams were used to ionize the inner-shells of selected targets and study their subsequent emission of characteristic x-rays. ⁹Be⁺ ions were used to examine K-shell x-ray production from thin F, Na, Al, Si, P, Cl, and K targets, L-shell x-ray production from thin Cu, An, Ge, Br, Zr and Ag targets, and M-shell x-ray production from thin Pr, Nd, Eu, Dy, Ho, Hf, W, Au, Pb and Bi targets. L-shell x-ray production cross sections were also measured for ²⁷Al⁺ ions incident upon Ni, Cu, Zn, As, Zr, and Pd targets. M-shell x-ray production cross sections were measure for ²⁷Al⁺ and ⁴⁰Ar⁺ ions incident upon Pr, Nd, Gd, Dy, Lu, Hf, Au, Pb, Bi, and U targets. These measurements were performed using the 2.5 MV Van de Graaff accelerator at North Texas State University. The x-rays were detected with a Si(Li) detector whose efficiency was determined by fitting a theoretical photon absorption curve to experimentally measure values. The x-ray yields were normalized to the simultaneously measured Rutherford backscattered (RBS) yields which resulted in an x-ray production cross section per incident ion. The RBS spectrum was obtained using a standard surface barrier detector calibrated for to account for the "pulse height defect." The experimental results are compared to the predictions of both the first Born and ECPSSR theories; each of which is composed of two parts, the direct ionization (DI) of the target electron to the continuum and the capture (EC) of the target electron to the projectile. The first Born describes DI by the Plane-Wave-Born-Approximation (PWBA) and EC by the Oppenheimer-Brinkman-Kramers treatment of Nikolaev (OBKN). ECPSSR expands upon the first Born by using perturbed (PSS) and relativistic (R) target electron wave functions in addition to considering the energy loss (E) of the projectile in the target and its deviation from straight line trajectory (Coulomb deflection (C)). The measurements presented show that the first Born theories overestimate the measured results rather significantly for all experiments using the ⁹Be beams to examine the inner shell x-rays, while the ECPSSR predictions fir the measured data much better. For incident ²⁷Al and ⁴⁰Ar ions, the measured results are not predicted by the theories. The first Born generally over-predicts the data for low target atomic numbers while under-predicting at high atomic numbers. The ECPSSR theory greatly under-predicts the results (factors of 10³ to 10²⁰). Reasons for this behavior are discussed as well as suggestions for future experiments.
14

Modeling hot-electron injection and impact ionization in pFET's

Duffy, Christopher James 12 1900 (has links)
No description available.
15

Experimentální studium teploty elektronů a iontů v impaktovém plazmatu / Experimental study of electron and ion temperatures in impact plasmas

Kočiščák, Samuel January 2021 (has links)
Title: Experimental study of electron and ion temperatures in impact plasmas Author: Samuel Kočiščák Department: Department of Surface and Plasma Science - DSPS Supervisor: doc. RNDr. Jiří Pavlů, Ph.D., DSPS Abstract: In-situ analysis of a hypervelocity grain impact is a complex discipline, making use of multiple physical phenomena. An important one, if not the most important one, being a dust impact ionisation. Future experiments could benefit substantially from better understanding of the phenomenon. The goal of this work was a study of the impact ionisation per-se, with the objective: to experimentally determine the effective temperatures of post-impact charged ejecta. Importance of this parameter is obvious, although different approaches scarcely ever report similar results. Our way was the analysis in a retarding potential analyzer. Firstly, large data set of laboratory data from dust accelerator was analyzed, secondly a Monte Carlo study of the results and the analyzer itself was performed. Lastly, recommendations for future in-situ experiments are provided based on our results. Keywords: impact plasmas cosmic dust impact ionization
16

Frequency Response and Gain Enhancement of Solid-State Impact-Ionization Multipliers (SIMs)

Beutler, Joshua L. 23 February 2010 (has links) (PDF)
A study of the frequency response and gain of Solid-state the Impact-ionization Multiplier (SIM). The SIM generates current gain via impact ionization also known as avalanche gain. The SIM provides low noise amplification from an arbitrary current source. In the case of this study, current sources consisted of photodiodes optimized for a particular wavelength of light. The SIM is fabricated from silicon and enjoys the low noise, low carrier transit time advantages of conventional silicon impact ionization devices while amplifying current from a photodiode of a different material. This is advantageous because ideal detection and multiplication regions cannot always be grown on the same wafer. Furthermore a photodiode fitted to a SIM allows absorption and multiplication regions to be independently optimized. The SIM exhibits a current dependant input resistance. This resistance in combination with field effects from the SIM collector is the limiting factor in the frequency response of the SIM. Frequency response is improved to the extent that this floating voltage at the input can be minimized. Higher AC gains are realized in the device with the incorporation of 3-dimensional geometries. These improvements allow for improved device breakdown and reduced space-charge resistance at high input currents. Frequency response can also be improved by increasing the current flowing into the SIM, this current is most often in the form of DC current such that it can be filtered off at a the output and not interfere with the input signal.
17

High sensitivity AlGaAsSb avalanche photodiodes on InP substrates for 1.55 μm wavelength applications

Lee, Seunghyun 07 December 2022 (has links)
No description available.
18

The mixed-mode reliability stress of Silicon-Germanium heterojunction bipolar transistors

Zhu, Chendong 10 January 2007 (has links)
The objective of the dissertation is to combine the recent Mixed-Mode reliability stress studies into a single text. The thesis starts with a review of silicon-germanium heterojunction bipolar transistor fundamentals, development trends, and the conventional reliability stress paths used in industry, after which the new stress path, Mixed-Mode stress, is introduced. Chapter 2 is devoted to an in-depth discussion of damage mechanisms that includes the impact ionization effct and the selfheating effect. Chapter 3 goes onto the impact ionization effect using two-dimensional calibrated MEDICI simulations. Chapter 4 assesses the reliability of SiGe HBTs in extreme temperature environments by way of comprehensive experiments and MEDICI simulations. A comparison of the device lifetimes for reverse-EB stress and mixed-mode stress indicates different damage mechanisms govern these phenomena. The thesis concludes with a summary of the project and suggestions for future research in chapter 5.
19

Study on Avalanche Breakdown in GaN / 窒化ガリウムのアバランシェ破壊に関する研究

Maeda, Takuya 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22447号 / 工博第4708号 / 新制||工||1735(附属図書館) / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 木本 恒暢, 教授 山田 啓文, 准教授 船戸 充 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
20

Laboratorní studium nabíjení prachu a jeho ionizace dopadem / Laboratory investigation of dust charging and impact ionization

Nouzák, Libor January 2018 (has links)
Dust is an almost ubiquitous component of the cosmic plasma (e.g., planetary and cometary magnetospheres, the heliosphere, the interstellar medium, supernova shells). However, it can be also frequently encountered in industrial applications as a principal agent in material treatments, or as an undesirable ingredient in a production of microelectronic components, or in fusion devices. Since dust particles are one of the main elements of interest in the solar system (e.g., Earth, Jovian and Saturnian systems) and in the interstellar medium, there is a number of missions (e.g., ROSETTA, Cassini) that provided investigations of the properties and global dynamics of charged dust grains. In these environments, the relevant charging processes are interactions with electrons and ions of the solar wind and photoemission by solar UV radiation that often dominates. However, in-site investigations of such processes are difficult because several processes act in accord. The present thesis studies charging processes in laboratory settings where these processes can be investigated separately. In the first series of experiments focused on applications in the lunar or planetary surroundings, a single (charged) dust grain is stored in an electrodynamic trap and expose to electron and/or ion beams with variable energies and...

Page generated in 0.1244 seconds